Python cv2.IMREAD_ANYDEPTH Examples

The following are 30 code examples of cv2.IMREAD_ANYDEPTH(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module cv2 , or try the search function .
Example #1
Source File: doc3dwc_loader.py    From DewarpNet with MIT License 7 votes vote down vote up
def __getitem__(self, index):
        im_name = self.files[self.split][index]                # 1/824_8-cp_Page_0503-7Nw0001
        im_path = pjoin(self.root, 'img',  im_name + '.png')  
        lbl_path=pjoin(self.root, 'wc', im_name + '.exr')
        im = m.imread(im_path,mode='RGB')
        im = np.array(im, dtype=np.uint8)
        lbl = cv2.imread(lbl_path, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)
        lbl = np.array(lbl, dtype=np.float)
        if 'val' in self.split:
            im, lbl=tight_crop(im/255.0,lbl)
        if self.augmentations:          #this is for training, default false for validation\
            tex_id=random.randint(0,len(self.txpths)-1)
            txpth=self.txpths[tex_id] 
            tex=cv2.imread(os.path.join(self.root[:-7],txpth)).astype(np.uint8)
            bg=cv2.resize(tex,self.img_size,interpolation=cv2.INTER_NEAREST)
            im,lbl=data_aug(im,lbl,bg)
        if self.is_transform:
            im, lbl = self.transform(im, lbl)
        return im, lbl 
Example #2
Source File: process.py    From deepdiy with MIT License 6 votes vote down vote up
def run_tiff(file_path,progress_percent):
    progress_percent
    angle = 0
    ret,video=cv2.imreadmulti(file_path,flags=cv2.IMREAD_ANYDEPTH)
    video_labeled,table=[],[]
    idx=1
    for frame in video[:]:
        img_label,angle_new=process(frame)
        angle_new = float('{0:.2f}'.format(angle_new))
        rotation=cal_rotation(angle,angle_new)
        rotation = float('{0:.2f}'.format(rotation))
        table.append([angle,rotation,angle_new])
        video_labeled.append(img_label)
        angle=angle_new
        idx+=1
        progress_percent['value']=idx/len(video)*100
        # print(table[-1])
        # cv2.imshow('img',cv2.resize(img_label,(512,512)))
        # if cv2.waitKey(0) & 0xFF == ord('q'):
        #     break
    return video_labeled,table 
Example #3
Source File: dataset_util.py    From Gated2Depth with MIT License 6 votes vote down vote up
def read_gated_image(base_dir, gta_pass, img_id, data_type, num_bits=10, scale_images=False,
                     scaled_img_width=None, scaled_img_height=None,
                     normalize_images=False):
    gated_imgs = []
    normalizer = 2 ** num_bits - 1.

    for gate_id in range(3):
        gate_dir = os.path.join(base_dir, gta_pass, 'gated%d_10bit' % gate_id)
        img = cv2.imread(os.path.join(gate_dir, img_id + '.png'), cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)
        if data_type == 'real':
            img = img[crop_size:(img.shape[0] - crop_size), crop_size:(img.shape[1] - crop_size)]
            img = img.copy()
            img[img > 2 ** 10 - 1] = normalizer
        img = np.float32(img / normalizer)
        gated_imgs.append(np.expand_dims(img, axis=2))

    img = np.concatenate(gated_imgs, axis=2)
    if normalize_images:
        mean = np.mean(img, axis=2, keepdims=True)
        std = np.std(img, axis=2, keepdims=True)
        img = (img - mean) / (std + np.finfo(float).eps)
    if scale_images:
        img = cv2.resize(img, dsize=(scaled_img_width, scaled_img_height), interpolation=cv2.INTER_AREA)
    return np.expand_dims(img, axis=0) 
Example #4
Source File: io.py    From pydlt with BSD 3-Clause Clear License 6 votes vote down vote up
def imread(filename):
    """Reads an image file from disk into a Numpy Array (OpenCV view).

    Args:
        filename (str): Name of pfm image file.
    """
    filename = process(filename)
    ext = os.path.splitext(filename)[1]
    if ext.lower() == '.pfm':
        return load_pfm(filename)
    elif ext.lower() == '.dng':
        return load_dng(filename)
    else:
        loaded = cv2.imread(filename, flags=cv2.IMREAD_ANYDEPTH + cv2.IMREAD_COLOR)
        if loaded is None:
            raise IOError('Could not read {0}'.format(filename))
        else:
            return loaded 
Example #5
Source File: depth_fill.py    From sanet_relocal_demo with GNU General Public License v3.0 5 votes vote down vote up
def read_7scenese_depth(png_file_path):
        depth = cv2.imread(png_file_path, cv2.IMREAD_ANYDEPTH).astype(np.float32)
        depth[depth >= 65535] = 0
        return depth / 1000.0 
Example #6
Source File: test_flownet_2012.py    From DF-Net with MIT License 5 votes vote down vote up
def get_flow(path):
    bgr = cv2.imread(path, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)
    invalid = bgr[:, :, 0] == 0
    out_flow = (bgr[:, :, 2:0:-1].astype('f4') - 2**15) / 64.
    out_flow[invalid] = 0
    return out_flow, bgr[:, :, 0] 
Example #7
Source File: test_flownet_2015.py    From DF-Net with MIT License 5 votes vote down vote up
def get_flow(path):
    bgr = cv2.imread(path, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)
    invalid = bgr[:, :, 0] == 0
    out_flow = (bgr[:, :, 2:0:-1].astype('f4') - 2**15) / 64.
    out_flow[invalid] = 0
    return out_flow, bgr[:, :, 0] 
Example #8
Source File: depth_io.py    From sanet_relocal_demo with GNU General Public License v3.0 5 votes vote down vote up
def load_depth_from_tiff(tiff_file_path, div_factor=1000.0):
    depth = cv2.imread(tiff_file_path, cv2.IMREAD_ANYDEPTH).astype(np.float32)
    return depth / div_factor 
Example #9
Source File: depth_io.py    From sanet_relocal_demo with GNU General Public License v3.0 5 votes vote down vote up
def load_depth_from_png(png_file_path, div_factor=1000.0):
    depth = cv2.imread(png_file_path, cv2.IMREAD_ANYDEPTH).astype(np.float32)
    return depth / div_factor 
Example #10
Source File: read_util.py    From sanet_relocal_demo with GNU General Public License v3.0 5 votes vote down vote up
def read_7scenese_depth(png_file_path):
    depth = cv2.imread(png_file_path, cv2.IMREAD_ANYDEPTH).astype(np.float32)
    depth[depth >= 65535] = 0
    return depth / 1000.0 
Example #11
Source File: read_util.py    From sanet_relocal_demo with GNU General Public License v3.0 5 votes vote down vote up
def read_7scenese_depth(png_file_path):
    depth = cv2.imread(png_file_path, cv2.IMREAD_ANYDEPTH).astype(np.float32)
    depth[depth >= 65535] = 0
    return depth / 1000.0 
Example #12
Source File: read_util.py    From sanet_relocal_demo with GNU General Public License v3.0 5 votes vote down vote up
def read_sun3d_depth(filename, min_depth_thres=1e-5):
    """
    Read depth from a sun3d depth file
    :param filename: str
    :return depth as np.float32 array
    """
    depth_pil = cv2.imread(filename, cv2.IMREAD_ANYDEPTH).astype(np.uint16)
    depth_shifted = (depth_pil >> 3) | (depth_pil << 13)
    depth_shifted = depth_shifted.astype(np.float32)
    depth_float = (depth_shifted / 1000)
    # depth_float[depth_float < min_depth_thres] = min_depth_thres
    return depth_float 
Example #13
Source File: gen_lmdb_cache.py    From sanet_relocal_demo with GNU General Public License v3.0 5 votes vote down vote up
def read_raw_depth_uint16(filename):
    depth_pil = cv2.imread(filename, cv2.IMREAD_ANYDEPTH).astype(np.uint16)
    depth_shifted = (depth_pil >> 3) | (depth_pil << 13)
    return depth_shifted 
Example #14
Source File: gen_lmdb_cache.py    From sanet_relocal_demo with GNU General Public License v3.0 5 votes vote down vote up
def read_depth(self, depth_key, min_depth_thres=1e-5):
        depth_str = np.fromstring(self.read_by_key(depth_key), dtype=np.uint8)
        depth = np.asarray(cv2.imdecode(depth_str, cv2.IMREAD_ANYDEPTH)).reshape((240, 320))
        # print(depth.dtype)
        depth = depth.astype(np.float32)
        depth = (depth / 1000)
        # depth[depth < min_depth_thres] = min_depth_thres
        return depth 
Example #15
Source File: util.py    From in-silico-labeling with Apache License 2.0 5 votes vote down vote up
def read_image(path: str) -> np.ndarray:
  """Reads a 16-bit grayscale image and converts to floating point."""
  logging.info('Reading image: %s', path)
  image = cv2.imread(path, cv2.IMREAD_ANYDEPTH)
  assert image is not None
  assert len(image.shape) == 2, image.shape
  assert image.dtype == np.uint8 or image.dtype == np.uint16

  image = image.astype(np.float32) / np.iinfo(image.dtype).max
  assert image.min() >= 0, image.min()
  assert image.max() <= 1.0, image.max()
  return image 
Example #16
Source File: obj_utils.py    From monopsr with MIT License 5 votes vote down vote up
def get_stereo_point_cloud(sample_name, calib_dir, disp_dir):
    """
    Gets the point cloud for an image calculated from the disparity map

    :param sample_name: sample name
    :param calib_dir: directory with calibration files
    :param disp_dir: directory with disparity images

    :return: (3, N) point_cloud in the form [[x,...][y,...][z,...]]
    """

    # Read calibration info
    frame_calib = calib_utils.get_frame_calib(calib_dir, sample_name)
    stereo_calibration_info = calib_utils.get_stereo_calibration(frame_calib.p2,
                                                                 frame_calib.p3)

    # Read disparity
    disp = cv2.imread(disp_dir + '/{}.png'.format(sample_name),
                      cv2.IMREAD_ANYDEPTH)
    disp = np.float32(disp)
    disp = np.divide(disp, 256)
    disp[disp == 0] = 0.1

    # Calculate the point cloud
    point_cloud = calib_utils.depth_from_disparity(disp, stereo_calibration_info)

    return point_cloud 
Example #17
Source File: calib_utils.py    From monopsr with MIT License 5 votes vote down vote up
def read_disparity(disp_dir, img_idx):
    """Reads in Disparity file from Kitti Dataset.

        Keyword Arguments:
        ------------------
        calib_dir : Str
                    Directory of the disparity files.

        img_idx : Int
                  Index of the image.

        Returns:
        --------
        disp_img : Numpy Array
                   Contains the disparity image.

        [] : if file is not found

        """
    disp_path = disp_dir + "/%06d_left_disparity.png" % img_idx

    if os.path.exists(disp_path):
        disp_img = cv2.imread(disp_path, cv2.IMREAD_ANYDEPTH)
        return disp_img
    else:
        raise FileNotFoundError('Disparity map not found') 
Example #18
Source File: depth_map_utils.py    From monopsr with MIT License 5 votes vote down vote up
def read_depth_map(depth_map_path):

    depth_image = cv2.imread(depth_map_path, cv2.IMREAD_ANYDEPTH)
    depth_map = depth_image / 256.0

    # Discard depths less than 10cm from the camera
    depth_map[depth_map < 0.1] = 0.0

    return depth_map.astype(np.float32) 
Example #19
Source File: dataset_360D.py    From SphericalViewSynthesis with BSD 2-Clause "Simplified" License 5 votes vote down vote up
def loadItemMono(self, idx):
        item = {}
        if (idx >= self.length):
            print("Index [{}] out of range. Dataset length: {}".format(idx, self.length))
        else:
            dtmp = np.array(cv2.imread(self.sample["leftDepth"][idx], cv2.IMREAD_ANYDEPTH))            
            left_depth = torch.from_numpy(dtmp)
            left_depth.unsqueeze_(0)
            if self.rescaled:
                dtmp2 = cv2.resize(dtmp, (dtmp.shape[1] // 2, dtmp.shape[0] // 2))
                dtmp4 = cv2.resize(dtmp, (dtmp.shape[1] // 4, dtmp.shape[0] // 4))                
                left_depth2 = torch.from_numpy(dtmp2)
                left_depth2.unsqueeze_(0)
                left_depth4 = torch.from_numpy(dtmp4)
                left_depth4.unsqueeze_(0)

            pilRGB = Image.open(self.sample["leftRGB"][idx])
            rgb = self.pilToTensor(pilRGB)
            if self.rescaled:
                rgb2 = self.pilToTensor(self.resize2(pilRGB))
                rgb4 = self.pilToTensor(self.resize4(pilRGB))
            item = {
                "leftRGB": rgb,
                "leftRGB2": rgb2,
                "leftRGB4": rgb4, 
                "leftDepth": left_depth,
                "leftDepth2": left_depth2,
                "leftDepth4": left_depth4,                
                "leftDepth_filename": os.path.basename(self.sample["leftDepth"][idx][:-4])
                } if self.rescaled else {
                "leftRGB": rgb,
                "leftDepth": left_depth,
                "leftDepth_filename": os.path.basename(self.sample["leftDepth"][idx][:-4])
                }
        return item

    # loads sample from dataset lr mode 
Example #20
Source File: util.py    From hdr-expandnet with BSD 3-Clause Clear License 5 votes vote down vote up
def __getitem__(self, index):
        dpoint = cv2.imread(
            self.file_list[index], flags=cv2.IMREAD_ANYDEPTH + cv2.IMREAD_COLOR
        )
        if self.preprocess is not None:
            dpoint = self.preprocess(dpoint)
        return dpoint 
Example #21
Source File: create_kitti_tf_record.py    From motion-rcnn with MIT License 5 votes vote down vote up
def _read_flow(flow_fn):
  "Convert from .png to (h, w, 2) (flow_x, flow_y) float32 array"
  # read png to bgr in 16 bit unsigned short
  bgr = cv2.imread(flow_fn, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)
  rgb = cv2.cvtColor(bgr, cv2.COLOR_BGR2RGB)
  h, w, _c = rgb.shape
  assert rgb.dtype == np.uint16 and _c == 3
  invalid = rgb[:, :, 2] == 0
  # g,r == flow_y,x normalized by height,width and scaled to [0;2**16 - 1]
  out_flow = (rgb[:, :, :2] - 2 ** 15) / 64.0
  print(out_flow.shape, invalid.shape)
  out_flow[invalid] = np.nan # 0 or another value (e.g., np.nan)
  return out_flow 
Example #22
Source File: create_kitti_tf_record.py    From motion-rcnn with MIT License 5 votes vote down vote up
def _read_image(filename, rgb=False):
  "Read (h, w, 3) image from .png."
  if not rgb:
    with open(filename, 'rb') as f:
      image = f.read()
    return image
  image = cv2.imread(filename, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)
  h, w, _c = image.shape
  assert image.dtype == np.uint8 and _c == 3
  if rgb:
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
  return image 
Example #23
Source File: create_kitti_tf_record.py    From motion-rcnn with MIT License 5 votes vote down vote up
def _read_disparity_image(filename):
  "Read (h, w, 1) uint16 KITTI disparity image from .png."
  image = cv2.imread(filename, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)
  h, w = image.shape[:2]
  assert image.dtype == np.uint16 and len(image.shape) == 2
  return image 
Example #24
Source File: create_vkitti_tf_record.py    From motion-rcnn with MIT License 5 votes vote down vote up
def _read_flow(flow_fn):
  "Convert from .png to (h, w, 2) (flow_x, flow_y) float32 array"
  # read png to bgr in 16 bit unsigned short
  bgr = cv2.imread(flow_fn, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)
  h, w, _c = bgr.shape
  assert bgr.dtype == np.uint16 and _c == 3
  # b == invalid flow flag == 0 for sky or other invalid flow
  invalid = bgr[..., 0] == 0
  # g,r == flow_y,x normalized by height,width and scaled to [0;2**16 - 1]
  out_flow = 2.0 / (2**16 - 1.0) * bgr[..., 2:0:-1].astype('f4') - 1
  out_flow[..., 0] *= w - 1
  out_flow[..., 1] *= h - 1
  out_flow[invalid] = np.nan # 0 or another value (e.g., np.nan)
  return out_flow 
Example #25
Source File: create_vkitti_tf_record.py    From motion-rcnn with MIT License 5 votes vote down vote up
def _read_image(filename, rgb=False):
  "Read (h, w, 3) image from .png."
  if not rgb:
    with open(filename, 'rb') as f:
      image = f.read()
    return image

  image = cv2.imread(filename, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)
  h, w, _c = image.shape
  assert image.dtype == np.uint8 and _c == 3
  if rgb:
    image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
  return image 
Example #26
Source File: nyuv2.py    From DeepV2D with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def __getitem__(self, index):
        data_blob = self.dataset_index[index]
        num_frames = data_blob['n_frames']
        num_samples = self.n_frames

        inds = np.random.choice(num_frames, num_samples, replace=False)
        keyframe_index = inds[0]

        images = []
        for i in inds:
            image_file = data_blob['images'][i]
            images.append(cv2.imread(image_file))

        depth_file = data_blob['depths'][keyframe_index]
        depth = cv2.imread(depth_file, cv2.IMREAD_ANYDEPTH)
        depth = (depth.astype(np.float32)) / 5000.0
        filled = fill_depth(depth)
        
        frameid = data_blob['ids'][keyframe_index]
        frameid = np.int32(frameid)
    
        poses = []
        for i in inds:
            pose_vec = data_blob['poses'][i]
            pose_mat = pose_vec2mat(pose_vec)
            poses.append(np.linalg.inv(pose_mat))

        images = np.stack(images, axis=0).astype(np.uint8)
        poses = np.stack(poses, axis=0).astype(np.float32)

        kvec = intrinsics.copy()
        return images, poses, depth, filled, filled, kvec, frameid 
Example #27
Source File: utls.py    From MBLLEN with Apache License 2.0 5 votes vote down vote up
def imread_color(path):
    img = cv.imread(path, cv.IMREAD_COLOR | cv.IMREAD_ANYDEPTH) / 255.
    b, g, r = cv.split(img)
    img_rgb = cv.merge([r, g, b])
    return img_rgb
    # return scipy.misc.imread(path, mode='RGB').astype(np.float) / 255. 
Example #28
Source File: dataset_sparsity.py    From ip_basic with MIT License 5 votes vote down vote up
def main():

    input_depth_dir = os.path.expanduser(
        '~/Kitti/depth/val_selection_cropped/velodyne_raw')

    images_to_use = sorted(glob.glob(input_depth_dir + '/*'))

    # Process depth images
    num_images = len(images_to_use)
    all_sparsities = np.zeros(num_images)

    for i in range(num_images):

        # Print progress
        sys.stdout.write('\rProcessing index {} / {}'.format(i, num_images - 1))
        sys.stdout.flush()

        depth_image_path = images_to_use[i]

        # Load depth from image
        depth_image = cv2.imread(depth_image_path, cv2.IMREAD_ANYDEPTH)

        # Divide by 256
        depth_map = depth_image / 256.0

        num_valid_pixels = len(np.where(depth_map > 0.0)[0])
        num_pixels = depth_image.shape[0] * depth_image.shape[1]

        sparsity = num_valid_pixels / (num_pixels * 2/3)
        all_sparsities[i] = sparsity

    print('')
    print('Sparsity')
    print('Min:   ', np.amin(all_sparsities))
    print('Max:   ', np.amax(all_sparsities))
    print('Mean:  ', np.mean(all_sparsities))
    print('Median:  ', np.median(all_sparsities))

    plt.hist(all_sparsities, bins=20)
    plt.show() 
Example #29
Source File: distill_dataset.py    From Learning-Monocular-Depth-by-Stereo with MIT License 5 votes vote down vote up
def read_image_scale(image_path, scale):
    img = cv2.imread(image_path, cv2.IMREAD_ANYDEPTH)
    if img is None:
        print("not finding {}".format(image_path))
    img = img.astype(np.float32) / scale
    return img 
Example #30
Source File: create_npy.py    From vkitti3D-dataset with MIT License 5 votes vote down vote up
def process_frame(image_path: str) -> Tuple[np.ndarray, np.ndarray, str, str]:
    """
    fix given frame
    :param image_path: path to frame which should be fixed
    :return: fixed frame
    """
    seq_no = image_path.split('/')[-3]
    img_no = image_path.split('/')[-1].split('.')[0]

    depth_path = f"{depth_root}/{seq_no}/clone/{img_no}.png"
    semantic_path = f"{labels_root}/{seq_no}/clone/{img_no}.png"

    # BGR -> RGB
    rgb_map = cv2.imread(image_path)[:, :, (2, 1, 0)]

    # convert centimeters to meters
    depth_map = cv2.imread(depth_path, cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH) / 100.

    # semantic image
    semantic_map = cv2.imread(semantic_path)[:, :, (2, 1, 0)]
    label_map = np.apply_along_axis(lambda r: rgb2label[tuple(r)], 2, semantic_map)

    # backprojection to camera space
    x3 = (xv - center_x) / focal_x * depth_map
    y3 = (yv - center_y) / focal_y * depth_map

    erg = np.stack((depth_map, -x3, -y3), axis=-1).reshape((-1, 3))
    erg = np.hstack((erg, rgb_map.reshape(-1, 3), label_map.reshape(-1, 1)))

    # delete sky points
    erg = distance_cutoff(erg, g_cutoff)

    if g_is_v1:
        return None, erg, seq_no, img_no
    else:
        erg = remove_car_shadows(erg, img_no, g_bb_eps)
        worldspace = transform2worldspace(erg, img_no)
        return worldspace, erg, seq_no, img_no