Python object_detection.utils.dataset_util.float_list_feature() Examples
The following are 30
code examples of object_detection.utils.dataset_util.float_list_feature().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
object_detection.utils.dataset_util
, or try the search function
.
Example #1
Source File: detection_inference_test.py From Elphas with Apache License 2.0 | 6 votes |
def create_mock_tfrecord(): pil_image = Image.fromarray(np.array([[[123, 0, 0]]], dtype=np.uint8), 'RGB') image_output_stream = StringIO.StringIO() pil_image.save(image_output_stream, format='png') encoded_image = image_output_stream.getvalue() feature_map = { 'test_field': dataset_util.float_list_feature([1, 2, 3, 4]), standard_fields.TfExampleFields.image_encoded: dataset_util.bytes_feature(encoded_image), } tf_example = tf.train.Example(features=tf.train.Features(feature=feature_map)) with tf.python_io.TFRecordWriter(get_mock_tfrecord_path()) as writer: writer.write(tf_example.SerializeToString())
Example #2
Source File: create_kitti_tf_record.py From motion-rcnn with MIT License | 6 votes |
def _create_tfexample(label_map_dict, image_id, encoded_image, encoded_next_image, disparity_image, next_disparity_image, flow): #camera_intrinsics = np.array([982.529, 690.0, 233.1966]) camera_intrinsics = np.array([725.0, 620.5, 187.0], dtype=np.float32) f, x0, y0 = camera_intrinsics depth = _depth_from_disparity_image(disparity_image, f) next_depth = _depth_from_disparity_image(next_disparity_image, f) key = hashlib.sha256(encoded_image).hexdigest() example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util.bytes_feature(image_id.encode('utf8')), 'image/source_id': dataset_util.bytes_feature(image_id.encode('utf8')), 'image/encoded': dataset_util.bytes_feature(encoded_image), 'next_image/encoded': dataset_util.bytes_feature(encoded_next_image), 'image/format': dataset_util.bytes_feature('png'.encode('utf8')), 'image/key/sha256': dataset_util.bytes_feature(key.encode('utf8')), 'image/depth': dataset_util.float_list_feature(depth.ravel().tolist()), 'next_image/depth': dataset_util.float_list_feature(next_depth.ravel().tolist()), 'image/flow': dataset_util.float_list_feature(example_flow.ravel().tolist()), 'image/camera/intrinsics': dataset_util.float_list_feature(camera_intrinsics.tolist()) })) return example, num_instances
Example #3
Source File: detection_inference_test.py From multilabel-image-classification-tensorflow with MIT License | 6 votes |
def create_mock_tfrecord(): pil_image = Image.fromarray(np.array([[[123, 0, 0]]], dtype=np.uint8), 'RGB') image_output_stream = StringIO.StringIO() pil_image.save(image_output_stream, format='png') encoded_image = image_output_stream.getvalue() feature_map = { 'test_field': dataset_util.float_list_feature([1, 2, 3, 4]), standard_fields.TfExampleFields.image_encoded: dataset_util.bytes_feature(encoded_image), } tf_example = tf.train.Example(features=tf.train.Features(feature=feature_map)) with tf.python_io.TFRecordWriter(get_mock_tfrecord_path()) as writer: writer.write(tf_example.SerializeToString())
Example #4
Source File: detection_inference_test.py From Person-Detection-and-Tracking with MIT License | 6 votes |
def create_mock_tfrecord(): pil_image = Image.fromarray(np.array([[[123, 0, 0]]], dtype=np.uint8), 'RGB') image_output_stream = StringIO.StringIO() pil_image.save(image_output_stream, format='png') encoded_image = image_output_stream.getvalue() feature_map = { 'test_field': dataset_util.float_list_feature([1, 2, 3, 4]), standard_fields.TfExampleFields.image_encoded: dataset_util.bytes_feature(encoded_image), } tf_example = tf.train.Example(features=tf.train.Features(feature=feature_map)) with tf.python_io.TFRecordWriter(get_mock_tfrecord_path()) as writer: writer.write(tf_example.SerializeToString())
Example #5
Source File: detection_inference_test.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def create_mock_tfrecord(): pil_image = Image.fromarray(np.array([[[123, 0, 0]]], dtype=np.uint8), 'RGB') image_output_stream = StringIO.StringIO() pil_image.save(image_output_stream, format='png') encoded_image = image_output_stream.getvalue() feature_map = { 'test_field': dataset_util.float_list_feature([1, 2, 3, 4]), standard_fields.TfExampleFields.image_encoded: dataset_util.bytes_feature(encoded_image), } tf_example = tf.train.Example(features=tf.train.Features(feature=feature_map)) with tf.python_io.TFRecordWriter(get_mock_tfrecord_path()) as writer: writer.write(tf_example.SerializeToString())
Example #6
Source File: detection_inference_test.py From ros_people_object_detection_tensorflow with Apache License 2.0 | 6 votes |
def create_mock_tfrecord(): pil_image = Image.fromarray(np.array([[[123, 0, 0]]], dtype=np.uint8), 'RGB') image_output_stream = StringIO.StringIO() pil_image.save(image_output_stream, format='png') encoded_image = image_output_stream.getvalue() feature_map = { 'test_field': dataset_util.float_list_feature([1, 2, 3, 4]), standard_fields.TfExampleFields.image_encoded: dataset_util.bytes_feature(encoded_image), } tf_example = tf.train.Example(features=tf.train.Features(feature=feature_map)) with tf.python_io.TFRecordWriter(get_mock_tfrecord_path()) as writer: writer.write(tf_example.SerializeToString())
Example #7
Source File: tf_example_decoder_test.py From MAX-Object-Detector with Apache License 2.0 | 6 votes |
def testDecodeObjectArea(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg = self._EncodeImage(image_tensor) object_area = [100., 174.] example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature('jpeg'), 'image/object/area': dataset_util.float_list_feature(object_area), })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder() tensor_dict = example_decoder.decode(tf.convert_to_tensor(example)) self.assertAllEqual((tensor_dict[fields.InputDataFields.groundtruth_area] .get_shape().as_list()), [2]) with self.test_session() as sess: tensor_dict = sess.run(tensor_dict) self.assertAllEqual(object_area, tensor_dict[fields.InputDataFields.groundtruth_area])
Example #8
Source File: detection_inference_test.py From yolo_v2 with Apache License 2.0 | 6 votes |
def create_mock_tfrecord(): pil_image = Image.fromarray(np.array([[[123, 0, 0]]], dtype=np.uint8), 'RGB') image_output_stream = StringIO.StringIO() pil_image.save(image_output_stream, format='png') encoded_image = image_output_stream.getvalue() feature_map = { 'test_field': dataset_util.float_list_feature([1, 2, 3, 4]), standard_fields.TfExampleFields.image_encoded: dataset_util.bytes_feature(encoded_image), } tf_example = tf.train.Example(features=tf.train.Features(feature=feature_map)) with tf.python_io.TFRecordWriter(get_mock_tfrecord_path()) as writer: writer.write(tf_example.SerializeToString())
Example #9
Source File: tf_example_decoder_test.py From multilabel-image-classification-tensorflow with MIT License | 6 votes |
def testDecodeObjectArea(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg = self._EncodeImage(image_tensor) object_area = [100., 174.] example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature('jpeg'), 'image/object/area': dataset_util.float_list_feature(object_area), })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder() tensor_dict = example_decoder.decode(tf.convert_to_tensor(example)) self.assertAllEqual((tensor_dict[fields.InputDataFields.groundtruth_area] .get_shape().as_list()), [2]) with self.test_session() as sess: tensor_dict = sess.run(tensor_dict) self.assertAllEqual(object_area, tensor_dict[fields.InputDataFields.groundtruth_area])
Example #10
Source File: tf_example_decoder_test.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def testDecodeObjectArea(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg = self._EncodeImage(image_tensor) object_area = [100., 174.] example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature('jpeg'), 'image/object/area': dataset_util.float_list_feature(object_area), })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder() tensor_dict = example_decoder.decode(tf.convert_to_tensor(example)) self.assertAllEqual((tensor_dict[fields.InputDataFields.groundtruth_area] .get_shape().as_list()), [2]) with self.test_session() as sess: tensor_dict = sess.run(tensor_dict) self.assertAllEqual(object_area, tensor_dict[fields.InputDataFields.groundtruth_area])
Example #11
Source File: detection_inference_test.py From g-tensorflow-models with Apache License 2.0 | 6 votes |
def create_mock_tfrecord(): pil_image = Image.fromarray(np.array([[[123, 0, 0]]], dtype=np.uint8), 'RGB') image_output_stream = StringIO.StringIO() pil_image.save(image_output_stream, format='png') encoded_image = image_output_stream.getvalue() feature_map = { 'test_field': dataset_util.float_list_feature([1, 2, 3, 4]), standard_fields.TfExampleFields.image_encoded: dataset_util.bytes_feature(encoded_image), } tf_example = tf.train.Example(features=tf.train.Features(feature=feature_map)) with tf.python_io.TFRecordWriter(get_mock_tfrecord_path()) as writer: writer.write(tf_example.SerializeToString())
Example #12
Source File: input_reader_builder_test.py From multilabel-image-classification-tensorflow with MIT License | 6 votes |
def create_tf_record(self): path = os.path.join(self.get_temp_dir(), 'tfrecord') writer = tf.python_io.TFRecordWriter(path) image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8) flat_mask = (4 * 5) * [1.0] with self.test_session(): encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).eval() example = tf.train.Example(features=tf.train.Features(feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')), 'image/height': dataset_util.int64_feature(4), 'image/width': dataset_util.int64_feature(5), 'image/object/bbox/xmin': dataset_util.float_list_feature([0.0]), 'image/object/bbox/xmax': dataset_util.float_list_feature([1.0]), 'image/object/bbox/ymin': dataset_util.float_list_feature([0.0]), 'image/object/bbox/ymax': dataset_util.float_list_feature([1.0]), 'image/object/class/label': dataset_util.int64_list_feature([2]), 'image/object/mask': dataset_util.float_list_feature(flat_mask), })) writer.write(example.SerializeToString()) writer.close() return path
Example #13
Source File: input_reader_builder_test.py From MAX-Object-Detector with Apache License 2.0 | 6 votes |
def create_tf_record(self): path = os.path.join(self.get_temp_dir(), 'tfrecord') writer = tf.python_io.TFRecordWriter(path) image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8) flat_mask = (4 * 5) * [1.0] with self.test_session(): encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).eval() example = tf.train.Example(features=tf.train.Features(feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')), 'image/height': dataset_util.int64_feature(4), 'image/width': dataset_util.int64_feature(5), 'image/object/bbox/xmin': dataset_util.float_list_feature([0.0]), 'image/object/bbox/xmax': dataset_util.float_list_feature([1.0]), 'image/object/bbox/ymin': dataset_util.float_list_feature([0.0]), 'image/object/bbox/ymax': dataset_util.float_list_feature([1.0]), 'image/object/class/label': dataset_util.int64_list_feature([2]), 'image/object/mask': dataset_util.float_list_feature(flat_mask), })) writer.write(example.SerializeToString()) writer.close() return path
Example #14
Source File: input_reader_builder_test.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def create_tf_record(self): path = os.path.join(self.get_temp_dir(), 'tfrecord') writer = tf.python_io.TFRecordWriter(path) image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8) flat_mask = (4 * 5) * [1.0] with self.test_session(): encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).eval() example = tf.train.Example(features=tf.train.Features(feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')), 'image/height': dataset_util.int64_feature(4), 'image/width': dataset_util.int64_feature(5), 'image/object/bbox/xmin': dataset_util.float_list_feature([0.0]), 'image/object/bbox/xmax': dataset_util.float_list_feature([1.0]), 'image/object/bbox/ymin': dataset_util.float_list_feature([0.0]), 'image/object/bbox/ymax': dataset_util.float_list_feature([1.0]), 'image/object/class/label': dataset_util.int64_list_feature([2]), 'image/object/mask': dataset_util.float_list_feature(flat_mask), })) writer.write(example.SerializeToString()) writer.close() return path
Example #15
Source File: detection_inference_test.py From Traffic-Rule-Violation-Detection-System with MIT License | 6 votes |
def create_mock_tfrecord(): pil_image = Image.fromarray(np.array([[[123, 0, 0]]], dtype=np.uint8), 'RGB') image_output_stream = StringIO.StringIO() pil_image.save(image_output_stream, format='png') encoded_image = image_output_stream.getvalue() feature_map = { 'test_field': dataset_util.float_list_feature([1, 2, 3, 4]), standard_fields.TfExampleFields.image_encoded: dataset_util.bytes_feature(encoded_image), } tf_example = tf.train.Example(features=tf.train.Features(feature=feature_map)) with tf.python_io.TFRecordWriter(get_mock_tfrecord_path()) as writer: writer.write(tf_example.SerializeToString())
Example #16
Source File: detection_inference_test.py From Gun-Detector with Apache License 2.0 | 6 votes |
def create_mock_tfrecord(): pil_image = Image.fromarray(np.array([[[123, 0, 0]]], dtype=np.uint8), 'RGB') image_output_stream = StringIO.StringIO() pil_image.save(image_output_stream, format='png') encoded_image = image_output_stream.getvalue() feature_map = { 'test_field': dataset_util.float_list_feature([1, 2, 3, 4]), standard_fields.TfExampleFields.image_encoded: dataset_util.bytes_feature(encoded_image), } tf_example = tf.train.Example(features=tf.train.Features(feature=feature_map)) with tf.python_io.TFRecordWriter(get_mock_tfrecord_path()) as writer: writer.write(tf_example.SerializeToString())
Example #17
Source File: detection_inference_test.py From ros_tensorflow with Apache License 2.0 | 6 votes |
def create_mock_tfrecord(): pil_image = Image.fromarray(np.array([[[123, 0, 0]]], dtype=np.uint8), 'RGB') image_output_stream = StringIO.StringIO() pil_image.save(image_output_stream, format='png') encoded_image = image_output_stream.getvalue() feature_map = { 'test_field': dataset_util.float_list_feature([1, 2, 3, 4]), standard_fields.TfExampleFields.image_encoded: dataset_util.bytes_feature(encoded_image), } tf_example = tf.train.Example(features=tf.train.Features(feature=feature_map)) with tf.python_io.TFRecordWriter(get_mock_tfrecord_path()) as writer: writer.write(tf_example.SerializeToString())
Example #18
Source File: detection_inference_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 6 votes |
def create_mock_tfrecord(): pil_image = Image.fromarray(np.array([[[123, 0, 0]]], dtype=np.uint8), 'RGB') image_output_stream = StringIO.StringIO() pil_image.save(image_output_stream, format='png') encoded_image = image_output_stream.getvalue() feature_map = { 'test_field': dataset_util.float_list_feature([1, 2, 3, 4]), standard_fields.TfExampleFields.image_encoded: dataset_util.bytes_feature(encoded_image), } tf_example = tf.train.Example(features=tf.train.Features(feature=feature_map)) with tf.python_io.TFRecordWriter(get_mock_tfrecord_path()) as writer: writer.write(tf_example.SerializeToString())
Example #19
Source File: tf_example_decoder_test.py From g-tensorflow-models with Apache License 2.0 | 6 votes |
def testDecodeObjectArea(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg = self._EncodeImage(image_tensor) object_area = [100., 174.] example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature('jpeg'), 'image/object/area': dataset_util.float_list_feature(object_area), })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder() tensor_dict = example_decoder.decode(tf.convert_to_tensor(example)) self.assertAllEqual((tensor_dict[fields.InputDataFields.groundtruth_area] .get_shape().as_list()), [2]) with self.test_session() as sess: tensor_dict = sess.run(tensor_dict) self.assertAllEqual(object_area, tensor_dict[fields.InputDataFields.groundtruth_area])
Example #20
Source File: detection_inference_test.py From MAX-Object-Detector with Apache License 2.0 | 6 votes |
def create_mock_tfrecord(): pil_image = Image.fromarray(np.array([[[123, 0, 0]]], dtype=np.uint8), 'RGB') image_output_stream = StringIO.StringIO() pil_image.save(image_output_stream, format='png') encoded_image = image_output_stream.getvalue() feature_map = { 'test_field': dataset_util.float_list_feature([1, 2, 3, 4]), standard_fields.TfExampleFields.image_encoded: dataset_util.bytes_feature(encoded_image), } tf_example = tf.train.Example(features=tf.train.Features(feature=feature_map)) with tf.python_io.TFRecordWriter(get_mock_tfrecord_path()) as writer: writer.write(tf_example.SerializeToString())
Example #21
Source File: detection_inference_test.py From AniSeg with Apache License 2.0 | 6 votes |
def create_mock_tfrecord(): pil_image = Image.fromarray(np.array([[[123, 0, 0]]], dtype=np.uint8), 'RGB') image_output_stream = StringIO.StringIO() pil_image.save(image_output_stream, format='png') encoded_image = image_output_stream.getvalue() feature_map = { 'test_field': dataset_util.float_list_feature([1, 2, 3, 4]), standard_fields.TfExampleFields.image_encoded: dataset_util.bytes_feature(encoded_image), } tf_example = tf.train.Example(features=tf.train.Features(feature=feature_map)) with tf.python_io.TFRecordWriter(get_mock_tfrecord_path()) as writer: writer.write(tf_example.SerializeToString())
Example #22
Source File: detection_inference_test.py From object_detection_with_tensorflow with MIT License | 6 votes |
def create_mock_tfrecord(): pil_image = Image.fromarray(np.array([[[123, 0, 0]]], dtype=np.uint8), 'RGB') image_output_stream = StringIO.StringIO() pil_image.save(image_output_stream, format='png') encoded_image = image_output_stream.getvalue() feature_map = { 'test_field': dataset_util.float_list_feature([1, 2, 3, 4]), standard_fields.TfExampleFields.image_encoded: dataset_util.bytes_feature(encoded_image), } tf_example = tf.train.Example(features=tf.train.Features(feature=feature_map)) with tf.python_io.TFRecordWriter(get_mock_tfrecord_path()) as writer: writer.write(tf_example.SerializeToString())
Example #23
Source File: input_reader_builder_test.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 6 votes |
def create_tf_record(self): path = os.path.join(self.get_temp_dir(), 'tfrecord') writer = tf.python_io.TFRecordWriter(path) image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8) flat_mask = (4 * 5) * [1.0] with self.test_session(): encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).eval() example = tf.train.Example(features=tf.train.Features(feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')), 'image/height': dataset_util.int64_feature(4), 'image/width': dataset_util.int64_feature(5), 'image/object/bbox/xmin': dataset_util.float_list_feature([0.0]), 'image/object/bbox/xmax': dataset_util.float_list_feature([1.0]), 'image/object/bbox/ymin': dataset_util.float_list_feature([0.0]), 'image/object/bbox/ymax': dataset_util.float_list_feature([1.0]), 'image/object/class/label': dataset_util.int64_list_feature([2]), 'image/object/mask': dataset_util.float_list_feature(flat_mask), })) writer.write(example.SerializeToString()) writer.close() return path
Example #24
Source File: input_reader_builder_test.py From g-tensorflow-models with Apache License 2.0 | 6 votes |
def create_tf_record(self): path = os.path.join(self.get_temp_dir(), 'tfrecord') writer = tf.python_io.TFRecordWriter(path) image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8) flat_mask = (4 * 5) * [1.0] with self.test_session(): encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).eval() example = tf.train.Example(features=tf.train.Features(feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')), 'image/height': dataset_util.int64_feature(4), 'image/width': dataset_util.int64_feature(5), 'image/object/bbox/xmin': dataset_util.float_list_feature([0.0]), 'image/object/bbox/xmax': dataset_util.float_list_feature([1.0]), 'image/object/bbox/ymin': dataset_util.float_list_feature([0.0]), 'image/object/bbox/ymax': dataset_util.float_list_feature([1.0]), 'image/object/class/label': dataset_util.int64_list_feature([2]), 'image/object/mask': dataset_util.float_list_feature(flat_mask), })) writer.write(example.SerializeToString()) writer.close() return path
Example #25
Source File: input_reader_builder_test.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 6 votes |
def create_tf_record(self): path = os.path.join(self.get_temp_dir(), 'tfrecord') writer = tf.python_io.TFRecordWriter(path) image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8) flat_mask = (4 * 5) * [1.0] with self.test_session(): encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).eval() example = tf.train.Example(features=tf.train.Features(feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')), 'image/height': dataset_util.int64_feature(4), 'image/width': dataset_util.int64_feature(5), 'image/object/bbox/xmin': dataset_util.float_list_feature([0.0]), 'image/object/bbox/xmax': dataset_util.float_list_feature([1.0]), 'image/object/bbox/ymin': dataset_util.float_list_feature([0.0]), 'image/object/bbox/ymax': dataset_util.float_list_feature([1.0]), 'image/object/class/label': dataset_util.int64_list_feature([2]), 'image/object/mask': dataset_util.float_list_feature(flat_mask), })) writer.write(example.SerializeToString()) writer.close() return path
Example #26
Source File: detection_inference_tf1_test.py From models with Apache License 2.0 | 6 votes |
def create_mock_tfrecord(): pil_image = Image.fromarray(np.array([[[123, 0, 0]]], dtype=np.uint8), 'RGB') image_output_stream = six.BytesIO() pil_image.save(image_output_stream, format='png') encoded_image = image_output_stream.getvalue() feature_map = { 'test_field': dataset_util.float_list_feature([1, 2, 3, 4]), standard_fields.TfExampleFields.image_encoded: dataset_util.bytes_feature(encoded_image), } tf_example = tf.train.Example(features=tf.train.Features(feature=feature_map)) with tf.python_io.TFRecordWriter(get_mock_tfrecord_path()) as writer: writer.write(tf_example.SerializeToString()) return encoded_image
Example #27
Source File: input_reader_builder_tf1_test.py From models with Apache License 2.0 | 6 votes |
def create_tf_record(self): path = os.path.join(self.get_temp_dir(), 'tfrecord') writer = tf.python_io.TFRecordWriter(path) image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8) flat_mask = (4 * 5) * [1.0] with self.test_session(): encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).eval() example = tf.train.Example(features=tf.train.Features(feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')), 'image/height': dataset_util.int64_feature(4), 'image/width': dataset_util.int64_feature(5), 'image/object/bbox/xmin': dataset_util.float_list_feature([0.0]), 'image/object/bbox/xmax': dataset_util.float_list_feature([1.0]), 'image/object/bbox/ymin': dataset_util.float_list_feature([0.0]), 'image/object/bbox/ymax': dataset_util.float_list_feature([1.0]), 'image/object/class/label': dataset_util.int64_list_feature([2]), 'image/object/mask': dataset_util.float_list_feature(flat_mask), })) writer.write(example.SerializeToString()) writer.close() return path
Example #28
Source File: tf_example_decoder_test.py From models with Apache License 2.0 | 5 votes |
def testDecodeClassConfidence(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg, _ = self._create_encoded_and_decoded_data( image_tensor, 'jpeg') class_confidence = [0.0, 1.0, 0.0] def graph_fn(): example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature(six.b('jpeg')), 'image/class/confidence': dataset_util.float_list_feature(class_confidence), })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder() output = example_decoder.decode(tf.convert_to_tensor(example)) self.assertAllEqual( (output[fields.InputDataFields.groundtruth_image_confidences] .get_shape().as_list()), [3]) return output tensor_dict = self.execute_cpu(graph_fn, []) self.assertAllEqual( class_confidence, tensor_dict[fields.InputDataFields.groundtruth_image_confidences])
Example #29
Source File: dataset_builder_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def create_tf_record(self, has_additional_channels=False, num_examples=1): path = os.path.join(self.get_temp_dir(), 'tfrecord') writer = tf.python_io.TFRecordWriter(path) image_tensor = np.random.randint(255, size=(4, 5, 3)).astype(np.uint8) additional_channels_tensor = np.random.randint( 255, size=(4, 5, 1)).astype(np.uint8) flat_mask = (4 * 5) * [1.0] with self.test_session(): encoded_jpeg = tf.image.encode_jpeg(tf.constant(image_tensor)).eval() encoded_additional_channels_jpeg = tf.image.encode_jpeg( tf.constant(additional_channels_tensor)).eval() for i in range(num_examples): features = { 'image/source_id': dataset_util.bytes_feature(str(i)), 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature('jpeg'.encode('utf8')), 'image/height': dataset_util.int64_feature(4), 'image/width': dataset_util.int64_feature(5), 'image/object/bbox/xmin': dataset_util.float_list_feature([0.0]), 'image/object/bbox/xmax': dataset_util.float_list_feature([1.0]), 'image/object/bbox/ymin': dataset_util.float_list_feature([0.0]), 'image/object/bbox/ymax': dataset_util.float_list_feature([1.0]), 'image/object/class/label': dataset_util.int64_list_feature([2]), 'image/object/mask': dataset_util.float_list_feature(flat_mask), } if has_additional_channels: additional_channels_key = 'image/additional_channels/encoded' features[additional_channels_key] = dataset_util.bytes_list_feature( [encoded_additional_channels_jpeg] * 2) example = tf.train.Example(features=tf.train.Features(feature=features)) writer.write(example.SerializeToString()) writer.close() return path
Example #30
Source File: tf_example_decoder_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def testDecodeDefaultGroundtruthWeights(self): image_tensor = np.random.randint(256, size=(4, 5, 3)).astype(np.uint8) encoded_jpeg = self._EncodeImage(image_tensor) bbox_ymins = [0.0, 4.0] bbox_xmins = [1.0, 5.0] bbox_ymaxs = [2.0, 6.0] bbox_xmaxs = [3.0, 7.0] example = tf.train.Example( features=tf.train.Features( feature={ 'image/encoded': dataset_util.bytes_feature(encoded_jpeg), 'image/format': dataset_util.bytes_feature('jpeg'), 'image/object/bbox/ymin': dataset_util.float_list_feature(bbox_ymins), 'image/object/bbox/xmin': dataset_util.float_list_feature(bbox_xmins), 'image/object/bbox/ymax': dataset_util.float_list_feature(bbox_ymaxs), 'image/object/bbox/xmax': dataset_util.float_list_feature(bbox_xmaxs), })).SerializeToString() example_decoder = tf_example_decoder.TfExampleDecoder() tensor_dict = example_decoder.decode(tf.convert_to_tensor(example)) self.assertAllEqual((tensor_dict[fields.InputDataFields.groundtruth_boxes] .get_shape().as_list()), [None, 4]) with self.test_session() as sess: tensor_dict = sess.run(tensor_dict) self.assertAllClose(tensor_dict[fields.InputDataFields.groundtruth_weights], np.ones(2, dtype=np.float32))