Python evaluator.evaluate() Examples
The following are 8
code examples of evaluator.evaluate().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
evaluator
, or try the search function
.
Example #1
Source File: evaluate.py From knowledge-net with MIT License | 6 votes |
def print_evaluation(eval_type): gold = copy.deepcopy(gold_dataset) prediction = copy.deepcopy(dataset) if eval_type == "uri": gold, goldProperties = evaluator.filterForURIEvaluation(gold) prediction, _ = evaluator.filterForURIEvaluation(prediction) else: goldProperties = properties confusionMatrix, analysis = evaluator.evaluate(gold, prediction, eval_type, goldProperties) # Print results print("RESULTS FOR",eval_type) evals = evaluator.microEvaluation(confusionMatrix, True) evals.extend(evaluator.macroEvaluation(confusionMatrix)) evaluator.writeAnalysisFile(analysis, 'tmp', eval_type) evaluator.writeHtmlFile(analysis, 'tmp', eval_type, goldProperties)
Example #2
Source File: special_forms.py From kimi with MIT License | 6 votes |
def lamb(args, env): # print("\n") # print("args (" + str(len(args)) + "):", args) # print("env: ", env.name) if len(args) < 2: throw_error("syntax", "Incorrect use of (lambda ...): must take at least two arguments (at least one variable and a body).") largs = args[:-1] lbody = args[-1] # print("largs (" + str(len(largs)) + "):", largs) for l in largs: assert_or_throw(l['type'] == 'symbol', "syntax", "Incorrect use of (lambda ...): the anonymous function's variables must be symbols.") largs = tuple(la['value'] for la in largs) # print("lbody:", lbody) def anonymous(*arguments): # print("inside anonymous function") # print("arguments(" + str(len(arguments)) + "):", arguments) if len(arguments) != len(largs): throw_error("syntax", "This function takes " + str(len(largs)) + " arguments (" + str(len(arguments)) + " provided).") lenv = Environment(name="anon_fn", outer=env, variables=largs, values=arguments) return ev.evaluate(lbody, lenv) return anonymous
Example #3
Source File: test_wf_gen.py From mc3 with Apache License 2.0 | 5 votes |
def run_stats(args): import evaluator rev_map = {} for k, v in fake_metadata.items(): rev_map[v['participant_id']] = k basedir = os.path.dirname( os.path.dirname(__file__) ) exome_dir = os.path.join(basedir, "testexomes") out_scores = {} for donor_dir in glob(os.path.join(args.out_dir, "*")): donor = os.path.basename(donor_dir) if rev_map[donor] not in out_scores: out_scores[rev_map[donor]] = {} for vcf_file in glob( os.path.join(donor_dir, "*.vcf")): method = os.path.basename(vcf_file).replace(".vcf", "") vtype = None if method in SNP_METHOD: vtype = "SNV" if method in INDEL_METHOD: vtype = "INDEL" truth_file = os.path.join(exome_dir, "testexome" + rev_map[donor][-1:] + ".truth.vcf.gz" ) scores = evaluator.evaluate(vcf_file, truth_file, vtype=vtype, truthmask=False) out_scores[rev_map[donor]][method] = scores print out_scores totals = {} for v in out_scores.values(): for method, values in v.items(): if method not in totals: totals[method] = [] totals[method].append( values ) for method, values in totals.items(): out = [] for i in range(3): out.append( "%s" % (sum( j[i] for j in values ) / float(len(values) )) ) print method, "\t".join(out)
Example #4
Source File: mc3_mut.py From mc3 with Apache License 2.0 | 5 votes |
def run_stats(args): import evaluator rev_map = {} for k, v in fake_metadata.items(): rev_map[v['participant_id']] = k basedir = os.path.dirname( os.path.dirname(__file__) ) exome_dir = os.path.join(basedir, "testexomes") out_scores = {} for donor_dir in glob(os.path.join(args.out_dir, "*")): donor = os.path.basename(donor_dir) if rev_map[donor] not in out_scores: out_scores[rev_map[donor]] = {} for vcf_file in glob( os.path.join(donor_dir, "*.vcf")): method = os.path.basename(vcf_file).replace(".vcf", "") vtype = None if method in SNP_METHOD: vtype = "SNV" if method in INDEL_METHOD: vtype = "INDEL" truth_file = os.path.join(exome_dir, "testexome" + rev_map[donor][-1:] + ".truth.vcf.gz" ) scores = evaluator.evaluate(vcf_file, truth_file, vtype=vtype, truthmask=False) out_scores[rev_map[donor]][method] = scores print out_scores totals = {} for v in out_scores.values(): for method, values in v.items(): if method not in totals: totals[method] = [] totals[method].append( values ) for method, values in totals.items(): out = [] for i in range(3): out.append( "%s" % (sum( j[i] for j in values ) / float(len(values) )) ) print method, "\t".join(out)
Example #5
Source File: special_forms.py From kimi with MIT License | 5 votes |
def do(args, env): do_env = Environment(name="do", outer=env) if len(args) == 0: throw_error("syntax", "Incorrect use of (do ...): must take at least one argument.") result = None for a in args: result = ev.evaluate(a, do_env) return result
Example #6
Source File: special_forms.py From kimi with MIT License | 5 votes |
def define(args, env): if len(args) != 2: throw_error("syntax", "Incorrect use of (define ...): must take exactly two arguments.") assert_or_throw(args[0]['type'] == 'symbol', "type", "Incorrect use of (define ...): the variable must be a symbol.") variable = args[0]['value'] value = ev.evaluate(args[1], env) env.set(variable, value) return value
Example #7
Source File: special_forms.py From kimi with MIT License | 5 votes |
def cond(args, env): if len(args) != 3: throw_error("syntax", "Incorrect use of (if ...): must take exactly three arguments (a test, a pass case, and a fail case).") test = ev.evaluate(args[0], env) if type(test) != bool: throw_error("type", "Incorrect use of (if ...): the test must evaluate to a boolean.") if test: return ev.evaluate(args[1], env) else: return ev.evaluate(args[2], env)
Example #8
Source File: eval.py From models with Apache License 2.0 | 4 votes |
def main(unused_argv): if (FLAGS.omp > 0): if not os.environ.get("OMP_NUM_THREADS"): logging.info('OMP_NUM_THREADS value= %d', FLAGS.omp) os.environ["OMP_NUM_THREADS"] = str(FLAGS.omp) if not os.environ.get("KMP_BLOCKTIME"): logging.info('KMP_BLOCKTIME value= %d', FLAGS.blocktime) os.environ["KMP_BLOCKTIME"] = str(FLAGS.blocktime) if not os.environ.get("KMP_SETTINGS"): os.environ["KMP_SETTINGS"] = "1" # os.environ["KMP_AFFINITY"]= "granularity=fine,verbose,compact,1,0" assert FLAGS.checkpoint_dir, '`checkpoint_dir` is missing.' assert FLAGS.eval_dir, '`eval_dir` is missing.' tf.io.gfile.makedirs(FLAGS.eval_dir) if FLAGS.pipeline_config_path: configs = config_util.get_configs_from_pipeline_file( FLAGS.pipeline_config_path) tf.io.gfile.copy(FLAGS.pipeline_config_path, os.path.join(FLAGS.eval_dir, 'pipeline.config'), overwrite=True) else: configs = config_util.get_configs_from_multiple_files( model_config_path=FLAGS.model_config_path, eval_config_path=FLAGS.eval_config_path, eval_input_config_path=FLAGS.input_config_path) for name, config in [('model.config', FLAGS.model_config_path), ('eval.config', FLAGS.eval_config_path), ('input.config', FLAGS.input_config_path)]: tf.io.gfile.copy(config, os.path.join(FLAGS.eval_dir, name), overwrite=True) model_config = configs['model'] eval_config = configs['eval_config'] input_config = configs['eval_input_config'] if FLAGS.eval_training_data: input_config = configs['train_input_config'] model_fn = functools.partial( model_builder.build, model_config=model_config, is_training=False) def get_next(config): return tf.compat.v1.data.make_initializable_iterator( dataset_util, dataset_builder.build(config)).get_next() create_input_dict_fn = functools.partial(get_next, input_config) label_map = label_map_util.load_labelmap(input_config.label_map_path) max_num_classes = max([item.id for item in label_map.item]) categories = label_map_util.convert_label_map_to_categories( label_map, max_num_classes) if FLAGS.run_once: eval_config.max_evals = 1 evaluator.evaluate(create_input_dict_fn, model_fn, eval_config, categories, FLAGS.checkpoint_dir, FLAGS.eval_dir, intra_op=FLAGS.intra_op, inter_op=FLAGS.inter_op)