Python object_detection.protos.model_pb2.DetectionModel() Examples
The following are 30
code examples of object_detection.protos.model_pb2.DetectionModel().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
object_detection.protos.model_pb2
, or try the search function
.
Example #1
Source File: model_builder.py From garbage-object-detection-tensorflow with MIT License | 6 votes |
def build(model_config, is_training): """Builds a DetectionModel based on the model config. Args: model_config: A model.proto object containing the config for the desired DetectionModel. is_training: True if this model is being built for training purposes. Returns: DetectionModel based on the config. Raises: ValueError: On invalid meta architecture or model. """ if not isinstance(model_config, model_pb2.DetectionModel): raise ValueError('model_config not of type model_pb2.DetectionModel.') meta_architecture = model_config.WhichOneof('model') if meta_architecture == 'ssd': return _build_ssd_model(model_config.ssd, is_training) if meta_architecture == 'faster_rcnn': return _build_faster_rcnn_model(model_config.faster_rcnn, is_training) raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
Example #2
Source File: model_builder.py From DOTA_models with Apache License 2.0 | 6 votes |
def build(model_config, is_training): """Builds a DetectionModel based on the model config. Args: model_config: A model.proto object containing the config for the desired DetectionModel. is_training: True if this model is being built for training purposes. Returns: DetectionModel based on the config. Raises: ValueError: On invalid meta architecture or model. """ if not isinstance(model_config, model_pb2.DetectionModel): raise ValueError('model_config not of type model_pb2.DetectionModel.') meta_architecture = model_config.WhichOneof('model') if meta_architecture == 'ssd': return _build_ssd_model(model_config.ssd, is_training) if meta_architecture == 'faster_rcnn': return _build_faster_rcnn_model(model_config.faster_rcnn, is_training) raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
Example #3
Source File: eval.py From tensorflow with BSD 2-Clause "Simplified" License | 6 votes |
def get_configs_from_pipeline_file(): """Reads evaluation configuration from a pipeline_pb2.TrainEvalPipelineConfig. Reads evaluation config from file specified by pipeline_config_path flag. Returns: model_config: a model_pb2.DetectionModel eval_config: a eval_pb2.EvalConfig input_config: a input_reader_pb2.InputReader """ pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() with tf.gfile.GFile(FLAGS.pipeline_config_path, 'r') as f: text_format.Merge(f.read(), pipeline_config) model_config = pipeline_config.model if FLAGS.eval_training_data: eval_config = pipeline_config.train_config else: eval_config = pipeline_config.eval_config input_config = pipeline_config.eval_input_reader return model_config, eval_config, input_config
Example #4
Source File: model_builder.py From object_detector_app with MIT License | 6 votes |
def build(model_config, is_training): """Builds a DetectionModel based on the model config. Args: model_config: A model.proto object containing the config for the desired DetectionModel. is_training: True if this model is being built for training purposes. Returns: DetectionModel based on the config. Raises: ValueError: On invalid meta architecture or model. """ if not isinstance(model_config, model_pb2.DetectionModel): raise ValueError('model_config not of type model_pb2.DetectionModel.') meta_architecture = model_config.WhichOneof('model') if meta_architecture == 'ssd': return _build_ssd_model(model_config.ssd, is_training) if meta_architecture == 'faster_rcnn': return _build_faster_rcnn_model(model_config.faster_rcnn, is_training) raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
Example #5
Source File: config_util.py From Gun-Detector with Apache License 2.0 | 6 votes |
def get_image_resizer_config(model_config): """Returns the image resizer config from a model config. Args: model_config: A model_pb2.DetectionModel. Returns: An image_resizer_pb2.ImageResizer. Raises: ValueError: If the model type is not recognized. """ meta_architecture = model_config.WhichOneof("model") if meta_architecture == "faster_rcnn": return model_config.faster_rcnn.image_resizer if meta_architecture == "ssd": return model_config.ssd.image_resizer raise ValueError("Unknown model type: {}".format(meta_architecture))
Example #6
Source File: config_util.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def get_image_resizer_config(model_config): """Returns the image resizer config from a model config. Args: model_config: A model_pb2.DetectionModel. Returns: An image_resizer_pb2.ImageResizer. Raises: ValueError: If the model type is not recognized. """ meta_architecture = model_config.WhichOneof("model") if meta_architecture == "faster_rcnn": return model_config.faster_rcnn.image_resizer if meta_architecture == "ssd": return model_config.ssd.image_resizer raise ValueError("Unknown model type: {}".format(meta_architecture))
Example #7
Source File: eval.py From object_detector_app with MIT License | 6 votes |
def get_configs_from_pipeline_file(): """Reads evaluation configuration from a pipeline_pb2.TrainEvalPipelineConfig. Reads evaluation config from file specified by pipeline_config_path flag. Returns: model_config: a model_pb2.DetectionModel eval_config: a eval_pb2.EvalConfig input_config: a input_reader_pb2.InputReader """ pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() with tf.gfile.GFile(FLAGS.pipeline_config_path, 'r') as f: text_format.Merge(f.read(), pipeline_config) model_config = pipeline_config.model if FLAGS.eval_training_data: eval_config = pipeline_config.train_config else: eval_config = pipeline_config.eval_config input_config = pipeline_config.eval_input_reader return model_config, eval_config, input_config
Example #8
Source File: model_builder.py From tensorflow with BSD 2-Clause "Simplified" License | 6 votes |
def build(model_config, is_training): """Builds a DetectionModel based on the model config. Args: model_config: A model.proto object containing the config for the desired DetectionModel. is_training: True if this model is being built for training purposes. Returns: DetectionModel based on the config. Raises: ValueError: On invalid meta architecture or model. """ if not isinstance(model_config, model_pb2.DetectionModel): raise ValueError('model_config not of type model_pb2.DetectionModel.') meta_architecture = model_config.WhichOneof('model') if meta_architecture == 'ssd': return _build_ssd_model(model_config.ssd, is_training) if meta_architecture == 'faster_rcnn': return _build_faster_rcnn_model(model_config.faster_rcnn, is_training) raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
Example #9
Source File: model_builder.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def build(model_config, is_training, add_summaries=True): """Builds a DetectionModel based on the model config. Args: model_config: A model.proto object containing the config for the desired DetectionModel. is_training: True if this model is being built for training purposes. add_summaries: Whether to add tensorflow summaries in the model graph. Returns: DetectionModel based on the config. Raises: ValueError: On invalid meta architecture or model. """ if not isinstance(model_config, model_pb2.DetectionModel): raise ValueError('model_config not of type model_pb2.DetectionModel.') meta_architecture = model_config.WhichOneof('model') if meta_architecture == 'ssd': return _build_ssd_model(model_config.ssd, is_training, add_summaries) if meta_architecture == 'faster_rcnn': return _build_faster_rcnn_model(model_config.faster_rcnn, is_training, add_summaries) raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
Example #10
Source File: model_builder.py From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License | 6 votes |
def build(model_config, is_training): """Builds a DetectionModel based on the model config. Args: model_config: A model.proto object containing the config for the desired DetectionModel. is_training: True if this model is being built for training purposes. Returns: DetectionModel based on the config. Raises: ValueError: On invalid meta architecture or model. """ if not isinstance(model_config, model_pb2.DetectionModel): raise ValueError('model_config not of type model_pb2.DetectionModel.') meta_architecture = model_config.WhichOneof('model') if meta_architecture == 'ssd': return _build_ssd_model(model_config.ssd, is_training) if meta_architecture == 'faster_rcnn': return _build_faster_rcnn_model(model_config.faster_rcnn, is_training) raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
Example #11
Source File: eval.py From Hands-On-Machine-Learning-with-OpenCV-4 with MIT License | 6 votes |
def get_configs_from_pipeline_file(): """Reads evaluation configuration from a pipeline_pb2.TrainEvalPipelineConfig. Reads evaluation config from file specified by pipeline_config_path flag. Returns: model_config: a model_pb2.DetectionModel eval_config: a eval_pb2.EvalConfig input_config: a input_reader_pb2.InputReader """ pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() with tf.gfile.GFile(FLAGS.pipeline_config_path, 'r') as f: text_format.Merge(f.read(), pipeline_config) model_config = pipeline_config.model if FLAGS.eval_training_data: eval_config = pipeline_config.train_config else: eval_config = pipeline_config.eval_config input_config = pipeline_config.eval_input_reader return model_config, eval_config, input_config
Example #12
Source File: config_util.py From ros_people_object_detection_tensorflow with Apache License 2.0 | 6 votes |
def get_image_resizer_config(model_config): """Returns the image resizer config from a model config. Args: model_config: A model_pb2.DetectionModel. Returns: An image_resizer_pb2.ImageResizer. Raises: ValueError: If the model type is not recognized. """ meta_architecture = model_config.WhichOneof("model") if meta_architecture == "faster_rcnn": return model_config.faster_rcnn.image_resizer if meta_architecture == "ssd": return model_config.ssd.image_resizer raise ValueError("Unknown model type: {}".format(meta_architecture))
Example #13
Source File: config_util.py From Traffic-Rule-Violation-Detection-System with MIT License | 6 votes |
def get_image_resizer_config(model_config): """Returns the image resizer config from a model config. Args: model_config: A model_pb2.DetectionModel. Returns: An image_resizer_pb2.ImageResizer. Raises: ValueError: If the model type is not recognized. """ meta_architecture = model_config.WhichOneof("model") if meta_architecture == "faster_rcnn": return model_config.faster_rcnn.image_resizer if meta_architecture == "ssd": return model_config.ssd.image_resizer raise ValueError("Unknown model type: {}".format(meta_architecture))
Example #14
Source File: model_builder.py From ros_people_object_detection_tensorflow with Apache License 2.0 | 6 votes |
def build(model_config, is_training, add_summaries=True): """Builds a DetectionModel based on the model config. Args: model_config: A model.proto object containing the config for the desired DetectionModel. is_training: True if this model is being built for training purposes. add_summaries: Whether to add tensorflow summaries in the model graph. Returns: DetectionModel based on the config. Raises: ValueError: On invalid meta architecture or model. """ if not isinstance(model_config, model_pb2.DetectionModel): raise ValueError('model_config not of type model_pb2.DetectionModel.') meta_architecture = model_config.WhichOneof('model') if meta_architecture == 'ssd': return _build_ssd_model(model_config.ssd, is_training, add_summaries) if meta_architecture == 'faster_rcnn': return _build_faster_rcnn_model(model_config.faster_rcnn, is_training, add_summaries) raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
Example #15
Source File: model_builder.py From yolo_v2 with Apache License 2.0 | 6 votes |
def build(model_config, is_training): """Builds a DetectionModel based on the model config. Args: model_config: A model.proto object containing the config for the desired DetectionModel. is_training: True if this model is being built for training purposes. Returns: DetectionModel based on the config. Raises: ValueError: On invalid meta architecture or model. """ if not isinstance(model_config, model_pb2.DetectionModel): raise ValueError('model_config not of type model_pb2.DetectionModel.') meta_architecture = model_config.WhichOneof('model') if meta_architecture == 'ssd': return _build_ssd_model(model_config.ssd, is_training) if meta_architecture == 'faster_rcnn': return _build_faster_rcnn_model(model_config.faster_rcnn, is_training) raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
Example #16
Source File: config_util.py From yolo_v2 with Apache License 2.0 | 6 votes |
def get_number_of_classes(model_config): """Returns the number of classes for a detection model. Args: model_config: A model_pb2.DetectionModel. Returns: Number of classes. Raises: ValueError: If the model type is not recognized. """ meta_architecture = model_config.WhichOneof("model") if meta_architecture == "faster_rcnn": return model_config.faster_rcnn.num_classes if meta_architecture == "ssd": return model_config.ssd.num_classes raise ValueError("Expected the model to be one of 'faster_rcnn' or 'ssd'.")
Example #17
Source File: config_util.py From Person-Detection-and-Tracking with MIT License | 6 votes |
def get_image_resizer_config(model_config): """Returns the image resizer config from a model config. Args: model_config: A model_pb2.DetectionModel. Returns: An image_resizer_pb2.ImageResizer. Raises: ValueError: If the model type is not recognized. """ meta_architecture = model_config.WhichOneof("model") if meta_architecture == "faster_rcnn": return model_config.faster_rcnn.image_resizer if meta_architecture == "ssd": return model_config.ssd.image_resizer raise ValueError("Unknown model type: {}".format(meta_architecture))
Example #18
Source File: model_builder.py From HereIsWally with MIT License | 6 votes |
def build(model_config, is_training): """Builds a DetectionModel based on the model config. Args: model_config: A model.proto object containing the config for the desired DetectionModel. is_training: True if this model is being built for training purposes. Returns: DetectionModel based on the config. Raises: ValueError: On invalid meta architecture or model. """ if not isinstance(model_config, model_pb2.DetectionModel): raise ValueError('model_config not of type model_pb2.DetectionModel.') meta_architecture = model_config.WhichOneof('model') if meta_architecture == 'ssd': return _build_ssd_model(model_config.ssd, is_training) if meta_architecture == 'faster_rcnn': return _build_faster_rcnn_model(model_config.faster_rcnn, is_training) raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
Example #19
Source File: eval.py From HereIsWally with MIT License | 6 votes |
def get_configs_from_pipeline_file(): """Reads evaluation configuration from a pipeline_pb2.TrainEvalPipelineConfig. Reads evaluation config from file specified by pipeline_config_path flag. Returns: model_config: a model_pb2.DetectionModel eval_config: a eval_pb2.EvalConfig input_config: a input_reader_pb2.InputReader """ pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() with tf.gfile.GFile(FLAGS.pipeline_config_path, 'r') as f: text_format.Merge(f.read(), pipeline_config) model_config = pipeline_config.model if FLAGS.eval_training_data: eval_config = pipeline_config.train_config else: eval_config = pipeline_config.eval_config input_config = pipeline_config.eval_input_reader return model_config, eval_config, input_config
Example #20
Source File: model_builder.py From Traffic-Rule-Violation-Detection-System with MIT License | 6 votes |
def build(model_config, is_training, add_summaries=True): """Builds a DetectionModel based on the model config. Args: model_config: A model.proto object containing the config for the desired DetectionModel. is_training: True if this model is being built for training purposes. add_summaries: Whether to add tensorflow summaries in the model graph. Returns: DetectionModel based on the config. Raises: ValueError: On invalid meta architecture or model. """ if not isinstance(model_config, model_pb2.DetectionModel): raise ValueError('model_config not of type model_pb2.DetectionModel.') meta_architecture = model_config.WhichOneof('model') if meta_architecture == 'ssd': return _build_ssd_model(model_config.ssd, is_training, add_summaries) if meta_architecture == 'faster_rcnn': return _build_faster_rcnn_model(model_config.faster_rcnn, is_training, add_summaries) raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
Example #21
Source File: eval.py From garbage-object-detection-tensorflow with MIT License | 6 votes |
def get_configs_from_pipeline_file(): """Reads evaluation configuration from a pipeline_pb2.TrainEvalPipelineConfig. Reads evaluation config from file specified by pipeline_config_path flag. Returns: model_config: a model_pb2.DetectionModel eval_config: a eval_pb2.EvalConfig input_config: a input_reader_pb2.InputReader """ pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() with tf.gfile.GFile(FLAGS.pipeline_config_path, 'r') as f: text_format.Merge(f.read(), pipeline_config) model_config = pipeline_config.model if FLAGS.eval_training_data: eval_config = pipeline_config.train_config else: eval_config = pipeline_config.eval_config input_config = pipeline_config.eval_input_reader return model_config, eval_config, input_config
Example #22
Source File: eval.py From DOTA_models with Apache License 2.0 | 6 votes |
def get_configs_from_pipeline_file(): """Reads evaluation configuration from a pipeline_pb2.TrainEvalPipelineConfig. Reads evaluation config from file specified by pipeline_config_path flag. Returns: model_config: a model_pb2.DetectionModel eval_config: a eval_pb2.EvalConfig input_config: a input_reader_pb2.InputReader """ pipeline_config = pipeline_pb2.TrainEvalPipelineConfig() with tf.gfile.GFile(FLAGS.pipeline_config_path, 'r') as f: text_format.Merge(f.read(), pipeline_config) model_config = pipeline_config.model if FLAGS.eval_training_data: eval_config = pipeline_config.train_config else: eval_config = pipeline_config.eval_config input_config = pipeline_config.eval_input_reader return model_config, eval_config, input_config
Example #23
Source File: model_builder.py From Gun-Detector with Apache License 2.0 | 5 votes |
def build(model_config, is_training, add_summaries=True, add_background_class=True): """Builds a DetectionModel based on the model config. Args: model_config: A model.proto object containing the config for the desired DetectionModel. is_training: True if this model is being built for training purposes. add_summaries: Whether to add tensorflow summaries in the model graph. add_background_class: Whether to add an implicit background class to one-hot encodings of groundtruth labels. Set to false if using groundtruth labels with an explicit background class or using multiclass scores instead of truth in the case of distillation. Ignored in the case of faster_rcnn. Returns: DetectionModel based on the config. Raises: ValueError: On invalid meta architecture or model. """ if not isinstance(model_config, model_pb2.DetectionModel): raise ValueError('model_config not of type model_pb2.DetectionModel.') meta_architecture = model_config.WhichOneof('model') if meta_architecture == 'ssd': return _build_ssd_model(model_config.ssd, is_training, add_summaries, add_background_class) if meta_architecture == 'faster_rcnn': return _build_faster_rcnn_model(model_config.faster_rcnn, is_training, add_summaries) raise ValueError('Unknown meta architecture: {}'.format(meta_architecture))
Example #24
Source File: model_builder_test.py From HereIsWally with MIT License | 5 votes |
def create_model(self, model_config): """Builds a DetectionModel based on the model config. Args: model_config: A model.proto object containing the config for the desired DetectionModel. Returns: DetectionModel based on the config. """ return model_builder.build(model_config, is_training=True)
Example #25
Source File: eval.py From HereIsWally with MIT License | 5 votes |
def get_configs_from_multiple_files(): """Reads evaluation configuration from multiple config files. Reads the evaluation config from the following files: model_config: Read from --model_config_path eval_config: Read from --eval_config_path input_config: Read from --input_config_path Returns: model_config: a model_pb2.DetectionModel eval_config: a eval_pb2.EvalConfig input_config: a input_reader_pb2.InputReader """ eval_config = eval_pb2.EvalConfig() with tf.gfile.GFile(FLAGS.eval_config_path, 'r') as f: text_format.Merge(f.read(), eval_config) model_config = model_pb2.DetectionModel() with tf.gfile.GFile(FLAGS.model_config_path, 'r') as f: text_format.Merge(f.read(), model_config) input_config = input_reader_pb2.InputReader() with tf.gfile.GFile(FLAGS.input_config_path, 'r') as f: text_format.Merge(f.read(), input_config) return model_config, eval_config, input_config
Example #26
Source File: model_builder_test.py From yolo_v2 with Apache License 2.0 | 5 votes |
def create_model(self, model_config): """Builds a DetectionModel based on the model config. Args: model_config: A model.proto object containing the config for the desired DetectionModel. Returns: DetectionModel based on the config. """ return model_builder.build(model_config, is_training=True)
Example #27
Source File: train.py From garbage-object-detection-tensorflow with MIT License | 5 votes |
def get_configs_from_multiple_files(): """Reads training configuration from multiple config files. Reads the training config from the following files: model_config: Read from --model_config_path train_config: Read from --train_config_path input_config: Read from --input_config_path Returns: model_config: model_pb2.DetectionModel train_config: train_pb2.TrainConfig input_config: input_reader_pb2.InputReader """ train_config = train_pb2.TrainConfig() with tf.gfile.GFile(FLAGS.train_config_path, 'r') as f: text_format.Merge(f.read(), train_config) model_config = model_pb2.DetectionModel() with tf.gfile.GFile(FLAGS.model_config_path, 'r') as f: text_format.Merge(f.read(), model_config) input_config = input_reader_pb2.InputReader() with tf.gfile.GFile(FLAGS.input_config_path, 'r') as f: text_format.Merge(f.read(), input_config) return model_config, train_config, input_config
Example #28
Source File: train.py From HereIsWally with MIT License | 5 votes |
def get_configs_from_multiple_files(): """Reads training configuration from multiple config files. Reads the training config from the following files: model_config: Read from --model_config_path train_config: Read from --train_config_path input_config: Read from --input_config_path Returns: model_config: model_pb2.DetectionModel train_config: train_pb2.TrainConfig input_config: input_reader_pb2.InputReader """ train_config = train_pb2.TrainConfig() with tf.gfile.GFile(FLAGS.train_config_path, 'r') as f: text_format.Merge(f.read(), train_config) model_config = model_pb2.DetectionModel() with tf.gfile.GFile(FLAGS.model_config_path, 'r') as f: text_format.Merge(f.read(), model_config) input_config = input_reader_pb2.InputReader() with tf.gfile.GFile(FLAGS.input_config_path, 'r') as f: text_format.Merge(f.read(), input_config) return model_config, train_config, input_config
Example #29
Source File: model_builder_test.py From Gun-Detector with Apache License 2.0 | 5 votes |
def create_model(self, model_config): """Builds a DetectionModel based on the model config. Args: model_config: A model.proto object containing the config for the desired DetectionModel. Returns: DetectionModel based on the config. """ return model_builder.build(model_config, is_training=True)
Example #30
Source File: eval.py From DOTA_models with Apache License 2.0 | 5 votes |
def get_configs_from_multiple_files(): """Reads evaluation configuration from multiple config files. Reads the evaluation config from the following files: model_config: Read from --model_config_path eval_config: Read from --eval_config_path input_config: Read from --input_config_path Returns: model_config: a model_pb2.DetectionModel eval_config: a eval_pb2.EvalConfig input_config: a input_reader_pb2.InputReader """ eval_config = eval_pb2.EvalConfig() with tf.gfile.GFile(FLAGS.eval_config_path, 'r') as f: text_format.Merge(f.read(), eval_config) model_config = model_pb2.DetectionModel() with tf.gfile.GFile(FLAGS.model_config_path, 'r') as f: text_format.Merge(f.read(), model_config) input_config = input_reader_pb2.InputReader() with tf.gfile.GFile(FLAGS.input_config_path, 'r') as f: text_format.Merge(f.read(), input_config) return model_config, eval_config, input_config