Python face_recognition.face_landmarks() Examples
The following are 3
code examples of face_recognition.face_landmarks().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
face_recognition
, or try the search function
.
Example #1
Source File: face_utils.py From GANimation with GNU General Public License v3.0 | 5 votes |
def detect_landmarks(face_img): landmakrs = face_recognition.face_landmarks(face_img) return landmakrs[0] if len(landmakrs) > 0 else None
Example #2
Source File: detect_facial_features.py From Python-for-Everyday-Life with MIT License | 5 votes |
def show_facial_features(image_path): # Load the jpg file into an array image = face_recognition.load_image_file(image_path) # these are the features that will be detected and shown facial_features = [ 'chin', 'left_eyebrow', 'right_eyebrow', 'nose_bridge', 'nose_tip', 'left_eye', 'right_eye', 'top_lip', 'bottom_lip'] blue = ImageColor.getcolor('blue', 'RGB') # Find all facial landmarks for all the faces in the image face_landmarks_list = face_recognition.face_landmarks(image) img_obj = Image.fromarray(image) # draw lines upon facial features for face_landmarks in face_landmarks_list: drawing = ImageDraw.Draw(img_obj) for facial_feature in facial_features: drawing.line(face_landmarks[facial_feature], width=2, fill=blue) # show image img_obj.show()
Example #3
Source File: blink_detection.py From face_recognition with MIT License | 4 votes |
def main(): closed_count = 0 video_capture = cv2.VideoCapture(0) ret, frame = video_capture.read(0) # cv2.VideoCapture.release() small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) rgb_small_frame = small_frame[:, :, ::-1] face_landmarks_list = face_recognition.face_landmarks(rgb_small_frame) process = True while True: ret, frame = video_capture.read(0) # get it into the correct format small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) rgb_small_frame = small_frame[:, :, ::-1] # get the correct face landmarks if process: face_landmarks_list = face_recognition.face_landmarks(rgb_small_frame) # get eyes for face_landmark in face_landmarks_list: left_eye = face_landmark['left_eye'] right_eye = face_landmark['right_eye'] color = (255,0,0) thickness = 2 cv2.rectangle(small_frame, left_eye[0], right_eye[-1], color, thickness) cv2.imshow('Video', small_frame) cv2.waitKey(1) ear_left = get_ear(left_eye) ear_right = get_ear(right_eye) closed = ear_left < 0.2 and ear_right < 0.2 if (closed): closed_count += 1 else: closed_count = 0 if (closed_count >= EYES_CLOSED_SECONDS): asleep = True while (asleep): #continue this loop until they wake up and acknowledge music print("EYES CLOSED") if (kb.is_pressed('space')): asleep = False closed_count = 0 process = not process