Python tensorflow.keras.optimizers.RMSprop() Examples
The following are 7
code examples of tensorflow.keras.optimizers.RMSprop().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.keras.optimizers
, or try the search function
.
Example #1
Source File: lstm_base.py From asreview with Apache License 2.0 | 5 votes |
def _get_optimizer(optimizer, lr_mult=1.0): "Get optimizer with correct learning rate." if optimizer == "sgd": return optimizers.SGD(lr=0.01*lr_mult) elif optimizer == "rmsprop": return optimizers.RMSprop(lr=0.001*lr_mult) elif optimizer == "adagrad": return optimizers.Adagrad(lr=0.01*lr_mult) elif optimizer == "adam": return optimizers.Adam(lr=0.001*lr_mult) elif optimizer == "nadam": return optimizers.Nadam(lr=0.002*lr_mult) raise NotImplementedError
Example #2
Source File: model_utils.py From keras-YOLOv3-model-set with MIT License | 5 votes |
def get_optimizer(optim_type, learning_rate, decay_type='cosine', decay_steps=100000): optim_type = optim_type.lower() lr_scheduler = get_lr_scheduler(learning_rate, decay_type, decay_steps) if optim_type == 'adam': optimizer = Adam(learning_rate=lr_scheduler, amsgrad=False) elif optim_type == 'rmsprop': optimizer = RMSprop(learning_rate=lr_scheduler, rho=0.9, momentum=0.0, centered=False) elif optim_type == 'sgd': optimizer = SGD(learning_rate=lr_scheduler, momentum=0.0, nesterov=False) else: raise ValueError('Unsupported optimizer type') return optimizer
Example #3
Source File: train_imagenet.py From keras-YOLOv3-model-set with MIT License | 5 votes |
def get_optimizer(optim_type, learning_rate): if optim_type == 'sgd': optimizer = SGD(lr=learning_rate, decay=5e-4, momentum=0.9) elif optim_type == 'rmsprop': optimizer = RMSprop(lr=learning_rate) elif optim_type == 'adam': optimizer = Adam(lr=learning_rate, decay=5e-4) else: raise ValueError('Unsupported optimizer type') return optimizer
Example #4
Source File: dcgan-mnist-4.2.1.py From Advanced-Deep-Learning-with-Keras with MIT License | 4 votes |
def build_and_train_models(): # load MNIST dataset (x_train, _), (_, _) = mnist.load_data() # reshape data for CNN as (28, 28, 1) and normalize image_size = x_train.shape[1] x_train = np.reshape(x_train, [-1, image_size, image_size, 1]) x_train = x_train.astype('float32') / 255 model_name = "dcgan_mnist" # network parameters # the latent or z vector is 100-dim latent_size = 100 batch_size = 64 train_steps = 40000 lr = 2e-4 decay = 6e-8 input_shape = (image_size, image_size, 1) # build discriminator model inputs = Input(shape=input_shape, name='discriminator_input') discriminator = build_discriminator(inputs) # [1] or original paper uses Adam, # but discriminator converges easily with RMSprop optimizer = RMSprop(lr=lr, decay=decay) discriminator.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) discriminator.summary() # build generator model input_shape = (latent_size, ) inputs = Input(shape=input_shape, name='z_input') generator = build_generator(inputs, image_size) generator.summary() # build adversarial model optimizer = RMSprop(lr=lr * 0.5, decay=decay * 0.5) # freeze the weights of discriminator during adversarial training discriminator.trainable = False # adversarial = generator + discriminator adversarial = Model(inputs, discriminator(generator(inputs)), name=model_name) adversarial.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) adversarial.summary() # train discriminator and adversarial networks models = (generator, discriminator, adversarial) params = (batch_size, latent_size, train_steps, model_name) train(models, x_train, params)
Example #5
Source File: cgan-mnist-4.3.1.py From Advanced-Deep-Learning-with-Keras with MIT License | 4 votes |
def build_and_train_models(): # load MNIST dataset (x_train, y_train), (_, _) = mnist.load_data() # reshape data for CNN as (28, 28, 1) and normalize image_size = x_train.shape[1] x_train = np.reshape(x_train, [-1, image_size, image_size, 1]) x_train = x_train.astype('float32') / 255 num_labels = np.amax(y_train) + 1 y_train = to_categorical(y_train) model_name = "cgan_mnist" # network parameters # the latent or z vector is 100-dim latent_size = 100 batch_size = 64 train_steps = 40000 lr = 2e-4 decay = 6e-8 input_shape = (image_size, image_size, 1) label_shape = (num_labels, ) # build discriminator model inputs = Input(shape=input_shape, name='discriminator_input') labels = Input(shape=label_shape, name='class_labels') discriminator = build_discriminator(inputs, labels, image_size) # [1] or original paper uses Adam, # but discriminator converges easily with RMSprop optimizer = RMSprop(lr=lr, decay=decay) discriminator.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) discriminator.summary() # build generator model input_shape = (latent_size, ) inputs = Input(shape=input_shape, name='z_input') generator = build_generator(inputs, labels, image_size) generator.summary() # build adversarial model = generator + discriminator optimizer = RMSprop(lr=lr*0.5, decay=decay*0.5) # freeze the weights of discriminator during adversarial training discriminator.trainable = False outputs = discriminator([generator([inputs, labels]), labels]) adversarial = Model([inputs, labels], outputs, name=model_name) adversarial.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy']) adversarial.summary() # train discriminator and adversarial networks models = (generator, discriminator, adversarial) data = (x_train, y_train) params = (batch_size, latent_size, train_steps, num_labels, model_name) train(models, data, params)
Example #6
Source File: lsgan-mnist-5.2.1.py From Advanced-Deep-Learning-with-Keras with MIT License | 4 votes |
def build_and_train_models(): """Load the dataset, build LSGAN discriminator, generator, and adversarial models. Call the LSGAN train routine. """ # load MNIST dataset (x_train, _), (_, _) = mnist.load_data() # reshape data for CNN as (28, 28, 1) and normalize image_size = x_train.shape[1] x_train = np.reshape(x_train, [-1, image_size, image_size, 1]) x_train = x_train.astype('float32') / 255 model_name = "lsgan_mnist" # network parameters # the latent or z vector is 100-dim latent_size = 100 input_shape = (image_size, image_size, 1) batch_size = 64 lr = 2e-4 decay = 6e-8 train_steps = 40000 # build discriminator model inputs = Input(shape=input_shape, name='discriminator_input') discriminator = gan.discriminator(inputs, activation=None) # [1] uses Adam, but discriminator easily # converges with RMSprop optimizer = RMSprop(lr=lr, decay=decay) # LSGAN uses MSE loss [2] discriminator.compile(loss='mse', optimizer=optimizer, metrics=['accuracy']) discriminator.summary() # build generator model input_shape = (latent_size, ) inputs = Input(shape=input_shape, name='z_input') generator = gan.generator(inputs, image_size) generator.summary() # build adversarial model = generator + discriminator optimizer = RMSprop(lr=lr*0.5, decay=decay*0.5) # freeze the weights of discriminator # during adversarial training discriminator.trainable = False adversarial = Model(inputs, discriminator(generator(inputs)), name=model_name) # LSGAN uses MSE loss [2] adversarial.compile(loss='mse', optimizer=optimizer, metrics=['accuracy']) adversarial.summary() # train discriminator and adversarial networks models = (generator, discriminator, adversarial) params = (batch_size, latent_size, train_steps, model_name) gan.train(models, x_train, params)
Example #7
Source File: pbt_memnn_example.py From ray with Apache License 2.0 | 4 votes |
def setup(self, config): with FileLock(os.path.expanduser("~/.tune.lock")): self.train_stories, self.test_stories = read_data() model = self.build_model() rmsprop = RMSprop( lr=self.config.get("lr", 1e-3), rho=self.config.get("rho", 0.9)) model.compile( optimizer=rmsprop, loss="sparse_categorical_crossentropy", metrics=["accuracy"]) self.model = model