Python tensorflow.half() Examples
The following are 30
code examples of tensorflow.half().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: gradient_descent_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testWithGlobalStep(self): for dtype in [tf.half, tf.float32, tf.float64]: with self.test_session(): global_step = tf.Variable(0, trainable=False) var0 = tf.Variable([1.0, 2.0], dtype=dtype) var1 = tf.Variable([3.0, 4.0], dtype=dtype) grads0 = tf.constant([0.1, 0.1], dtype=dtype) grads1 = tf.constant([0.01, 0.01], dtype=dtype) sgd_op = tf.train.GradientDescentOptimizer(3.0).apply_gradients( zip([grads0, grads1], [var0, var1]), global_step=global_step) tf.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllCloseAccordingToType([1.0, 2.0], var0.eval()) self.assertAllCloseAccordingToType([3.0, 4.0], var1.eval()) # Run 1 step of sgd sgd_op.run() # Validate updated params and global_step self.assertAllCloseAccordingToType( [1.0 - 3.0 * 0.1, 2.0 - 3.0 * 0.1], var0.eval()) self.assertAllCloseAccordingToType( [3.0 - 3.0 * 0.01, 4.0 - 3.0 * 0.01], var1.eval()) self.assertAllCloseAccordingToType(1, global_step.eval())
Example #2
Source File: adagrad_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testTensorLearningRate(self): for dtype in [tf.half, tf.float32, tf.float64]: with self.test_session(): var0 = tf.Variable([1.0, 2.0], dtype=dtype) var1 = tf.Variable([3.0, 4.0], dtype=dtype) grads0 = tf.constant([0.1, 0.1], dtype=dtype) grads1 = tf.constant([0.01, 0.01], dtype=dtype) ada_opt = tf.train.AdagradOptimizer( tf.constant(3.0), initial_accumulator_value=0.1) ada_update = ada_opt.apply_gradients(zip( [grads0, grads1], [var0, var1])) tf.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 4.0], var1.eval()) # Run 3 steps of adagrad for _ in range(3): ada_update.run() # Validate updated params self.assertAllCloseAccordingToType( np.array([-1.6026098728179932, -0.6026098728179932]), var0.eval()) self.assertAllCloseAccordingToType( np.array([2.715679168701172, 3.715679168701172]), var1.eval())
Example #3
Source File: adagrad_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def doTestBasic(self, use_locking=False): for dtype in [tf.half, tf.float32, tf.float64]: with self.test_session(): var0 = tf.Variable([1.0, 2.0], dtype=dtype) var1 = tf.Variable([3.0, 4.0], dtype=dtype) grads0 = tf.constant([0.1, 0.1], dtype=dtype) grads1 = tf.constant([0.01, 0.01], dtype=dtype) ada_opt = tf.train.AdagradOptimizer(3.0, initial_accumulator_value=0.1, use_locking=use_locking) ada_update = ada_opt.apply_gradients(zip( [grads0, grads1], [var0, var1])) tf.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 4.0], var1.eval()) # Run 3 steps of adagrad for _ in range(3): ada_update.run() # Validate updated params self.assertAllCloseAccordingToType( np.array([-1.6026098728179932, -0.6026098728179932]), var0.eval()) self.assertAllCloseAccordingToType( np.array([2.715679168701172, 3.715679168701172]), var1.eval())
Example #4
Source File: optimizer_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testPrecomputedGradient(self): for dtype in [tf.half, tf.float32, tf.float64]: with self.test_session(): var0 = tf.Variable([1.0, 2.0], dtype=dtype) var1 = tf.Variable([3.0, 4.0], dtype=dtype) cost = 5 * var0 + 3 * var1 grad_loss = tf.constant([42, -42], dtype=dtype) global_step = tf.Variable(tf.zeros([], tf.int64), name='global_step') sgd_op = tf.train.GradientDescentOptimizer(3.0) opt_op = sgd_op.minimize(cost, global_step, [var0, var1], grad_loss=grad_loss) tf.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 4.0], var1.eval()) # Run 1 step of sgd through optimizer opt_op.run() # Validate updated params self.assertAllClose( [1.0 - 3 * 5 * 42.0, 2.0 - 3 * 5 * (-42.0)], var0.eval()) self.assertAllClose( [3.0 - 3 * 3 * 42.0, 4.0 - 3 * 3 * (-42.0)], var1.eval())
Example #5
Source File: optimizer_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testAggregationMethod(self): for dtype in [tf.half, tf.float32, tf.float64]: with self.test_session(): var0 = tf.Variable([1.0, 2.0], dtype=dtype) var1 = tf.Variable([3.0, 4.0], dtype=dtype) cost = 5 * var0 + 3 * var1 global_step = tf.Variable(tf.zeros([], tf.int64), name='global_step') sgd_op = tf.train.GradientDescentOptimizer(3.0) opt_op = sgd_op.minimize( cost, global_step, [var0, var1], aggregation_method=tf.AggregationMethod.EXPERIMENTAL_ACCUMULATE_N) tf.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 4.0], var1.eval()) # Run 1 step of sgd through optimizer opt_op.run() # Validate updated params self.assertAllClose([-14., -13.], var0.eval()) self.assertAllClose([-6., -5.], var1.eval())
Example #6
Source File: optimizer_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testBasic(self): for dtype in [tf.half, tf.float32, tf.float64]: with self.test_session(): var0 = tf.Variable([1.0, 2.0], dtype=dtype) var1 = tf.Variable([3.0, 4.0], dtype=dtype) cost = 5 * var0 + 3 * var1 global_step = tf.Variable(tf.zeros([], tf.int64), name='global_step') sgd_op = tf.train.GradientDescentOptimizer(3.0) opt_op = sgd_op.minimize(cost, global_step, [var0, var1]) tf.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 4.0], var1.eval()) # Run 1 step of sgd through optimizer opt_op.run() # Validate updated params self.assertAllClose([-14., -13.], var0.eval()) self.assertAllClose([-6., -5.], var1.eval())
Example #7
Source File: gradient_descent_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testTensorLearningRate(self): for dtype in [tf.half, tf.float32, tf.float64]: with self.test_session(): var0 = tf.Variable([1.0, 2.0], dtype=dtype) var1 = tf.Variable([3.0, 4.0], dtype=dtype) grads0 = tf.constant([0.1, 0.1], dtype=dtype) grads1 = tf.constant([0.01, 0.01], dtype=dtype) lrate = tf.constant(3.0) sgd_op = tf.train.GradientDescentOptimizer(lrate).apply_gradients(zip( [grads0, grads1], [var0, var1])) tf.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllCloseAccordingToType([1.0, 2.0], var0.eval()) self.assertAllCloseAccordingToType([3.0, 4.0], var1.eval()) # Run 1 step of sgd sgd_op.run() # Validate updated params self.assertAllCloseAccordingToType( [1.0 - 3.0 * 0.1, 2.0 - 3.0 * 0.1], var0.eval()) self.assertAllCloseAccordingToType( [3.0 - 3.0 * 0.01, 4.0 - 3.0 * 0.01], var1.eval())
Example #8
Source File: ftrl_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testEquivAdagradwithoutRegularization(self): for dtype in [tf.half, tf.float32]: with self.test_session(): val0, val1 = self.applyOptimizer( tf.train.FtrlOptimizer(3.0, # Adagrad learning rate learning_rate_power=-0.5, initial_accumulator_value=0.1, l1_regularization_strength=0.0, l2_regularization_strength=0.0), dtype) with self.test_session(): val2, val3 = self.applyOptimizer( tf.train.AdagradOptimizer(3.0, initial_accumulator_value=0.1), dtype) self.assertAllCloseAccordingToType(val0, val2) self.assertAllCloseAccordingToType(val1, val3)
Example #9
Source File: ftrl_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testEquivSparseAdagradwithoutRegularization(self): for dtype in [tf.half, tf.float32]: with self.test_session(): val0, val1 = self.applyOptimizer( tf.train.FtrlOptimizer(3.0, # Adagrad learning rate learning_rate_power=-0.5, initial_accumulator_value=0.1, l1_regularization_strength=0.0, l2_regularization_strength=0.0), dtype, is_sparse=True) with self.test_session(): val2, val3 = self.applyOptimizer( tf.train.AdagradOptimizer(3.0, initial_accumulator_value=0.1), dtype, is_sparse=True) self.assertAllCloseAccordingToType(val0, val2) self.assertAllCloseAccordingToType(val1, val3)
Example #10
Source File: ftrl_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testEquivSparseGradientDescentwithoutRegularization(self): for dtype in [tf.half, tf.float32]: with self.test_session(): val0, val1 = self.applyOptimizer( tf.train.FtrlOptimizer(3.0, # Fixed learning rate learning_rate_power=-0.0, initial_accumulator_value=0.1, l1_regularization_strength=0.0, l2_regularization_strength=0.0), dtype, is_sparse=True) with self.test_session(): val2, val3 = self.applyOptimizer( tf.train.GradientDescentOptimizer(3.0), dtype, is_sparse=True) self.assertAllCloseAccordingToType(val0, val2) self.assertAllCloseAccordingToType(val1, val3)
Example #11
Source File: gradient_descent_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testBasic(self): for dtype in [tf.half, tf.float32, tf.float64]: with self.test_session(): var0 = tf.Variable([1.0, 2.0], dtype=dtype) var1 = tf.Variable([3.0, 4.0], dtype=dtype) grads0 = tf.constant([0.1, 0.1], dtype=dtype) grads1 = tf.constant([0.01, 0.01], dtype=dtype) sgd_op = tf.train.GradientDescentOptimizer(3.0).apply_gradients(zip( [grads0, grads1], [var0, var1])) tf.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllCloseAccordingToType([1.0, 2.0], var0.eval()) self.assertAllCloseAccordingToType([3.0, 4.0], var1.eval()) # Run 1 step of sgd sgd_op.run() # Validate updated params self.assertAllCloseAccordingToType( [1.0 - 3.0 * 0.1, 2.0 - 3.0 * 0.1], var0.eval()) self.assertAllCloseAccordingToType( [3.0 - 3.0 * 0.01, 4.0 - 3.0 * 0.01], var1.eval())
Example #12
Source File: ftrl_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testEquivGradientDescentwithoutRegularization(self): for dtype in [tf.half, tf.float32]: with self.test_session(): val0, val1 = self.applyOptimizer( tf.train.FtrlOptimizer(3.0, # Fixed learning rate learning_rate_power=-0.0, initial_accumulator_value=0.1, l1_regularization_strength=0.0, l2_regularization_strength=0.0), dtype) with self.test_session(): val2, val3 = self.applyOptimizer( tf.train.GradientDescentOptimizer(3.0), dtype) self.assertAllCloseAccordingToType(val0, val2) self.assertAllCloseAccordingToType(val1, val3)
Example #13
Source File: adam_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testTensorLearningRate(self): for dtype in [tf.half, tf.float32, tf.float64]: with self.test_session(): # Initialize variables for numpy implementation. m0, v0, m1, v1 = 0.0, 0.0, 0.0, 0.0 var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype) grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype) var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype) grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype) var0 = tf.Variable(var0_np) var1 = tf.Variable(var1_np) grads0 = tf.constant(grads0_np) grads1 = tf.constant(grads1_np) opt = tf.train.AdamOptimizer(tf.constant(0.001)) update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) tf.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllClose([1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 4.0], var1.eval()) beta1_power, beta2_power = opt._get_beta_accumulators() # Run 3 steps of Adam for t in range(1, 4): self.assertAllCloseAccordingToType(0.9 ** t, beta1_power.eval()) self.assertAllCloseAccordingToType(0.999 ** t, beta2_power.eval()) update.run() var0_np, m0, v0 = adam_update_numpy(var0_np, grads0_np, t, m0, v0) var1_np, m1, v1 = adam_update_numpy(var1_np, grads1_np, t, m1, v1) # Validate updated params self.assertAllCloseAccordingToType(var0_np, var0.eval()) self.assertAllCloseAccordingToType(var1_np, var1.eval())
Example #14
Source File: ftrl_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testFtrlWithL1_L2(self): for dtype in [tf.half, tf.float32]: with self.test_session() as sess: var0 = tf.Variable([1.0, 2.0], dtype=dtype) var1 = tf.Variable([4.0, 3.0], dtype=dtype) grads0 = tf.constant([0.1, 0.2], dtype=dtype) grads1 = tf.constant([0.01, 0.02], dtype=dtype) opt = tf.train.FtrlOptimizer(3.0, initial_accumulator_value=0.1, l1_regularization_strength=0.001, l2_regularization_strength=2.0) update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) tf.global_variables_initializer().run() v0_val, v1_val = sess.run([var0, var1]) self.assertAllCloseAccordingToType([1.0, 2.0], v0_val) self.assertAllCloseAccordingToType([4.0, 3.0], v1_val) # Run 10 steps FTRL for _ in range(10): update.run() v0_val, v1_val = sess.run([var0, var1]) self.assertAllCloseAccordingToType(np.array([-0.24059935, -0.46829352]), v0_val) self.assertAllCloseAccordingToType(np.array([-0.02406147, -0.04830509]), v1_val)
Example #15
Source File: variable_clipping_optimizer_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testDenseDistributed(self): worker, unused_ps = self._setupCluster() for dtype in [tf.float64, tf.half, tf.float32]: with tf.Session(worker.target): var0, var1, update_op = self._setupDense(True, dtype) self._assertDenseCorrect(var0, var1, update_op)
Example #16
Source File: variable_clipping_optimizer_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testSparseLocal(self): for dtype in [tf.float64, tf.float32, tf.half]: with self.test_session(): var0, var1, update_op = self._setupSparse(False, dtype) self._assertSparseCorrect(var0, var1, update_op)
Example #17
Source File: ftrl_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testFtrlwithoutRegularization2(self): for dtype in [tf.half, tf.float32]: with self.test_session() as sess: var0 = tf.Variable([1.0, 2.0], dtype=dtype) var1 = tf.Variable([4.0, 3.0], dtype=dtype) grads0 = tf.constant([0.1, 0.2], dtype=dtype) grads1 = tf.constant([0.01, 0.02], dtype=dtype) opt = tf.train.FtrlOptimizer(3.0, initial_accumulator_value=0.1, l1_regularization_strength=0.0, l2_regularization_strength=0.0) update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) tf.global_variables_initializer().run() v0_val, v1_val = sess.run([var0, var1]) self.assertAllCloseAccordingToType([1.0, 2.0], v0_val) self.assertAllCloseAccordingToType([4.0, 3.0], v1_val) # Run 3 steps FTRL for _ in range(3): update.run() v0_val, v1_val = sess.run([var0, var1]) self.assertAllCloseAccordingToType(np.array([-2.55607247, -3.98729396]), v0_val) self.assertAllCloseAccordingToType(np.array([-0.28232238, -0.56096673]), v1_val)
Example #18
Source File: ftrl_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testFtrlwithoutRegularization(self): for dtype in [tf.half, tf.float32]: with self.test_session() as sess: var0 = tf.Variable([0.0, 0.0], dtype=dtype) var1 = tf.Variable([0.0, 0.0], dtype=dtype) grads0 = tf.constant([0.1, 0.2], dtype=dtype) grads1 = tf.constant([0.01, 0.02], dtype=dtype) opt = tf.train.FtrlOptimizer(3.0, initial_accumulator_value=0.1, l1_regularization_strength=0.0, l2_regularization_strength=0.0) update = opt.apply_gradients(zip([grads0, grads1], [var0, var1])) tf.global_variables_initializer().run() v0_val, v1_val = sess.run([var0, var1]) self.assertAllClose([0.0, 0.0], v0_val) self.assertAllClose([0.0, 0.0], v1_val) # Run 3 steps FTRL for _ in range(3): update.run() v0_val, v1_val = sess.run([var0, var1]) self.assertAllCloseAccordingToType(np.array([-2.60260963, -4.29698515]), v0_val) self.assertAllCloseAccordingToType(np.array([-0.28432083, -0.56694895]), v1_val)
Example #19
Source File: adagrad_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testSharing(self): for dtype in [tf.half, tf.float32, tf.float64]: with self.test_session(): var0 = tf.Variable([1.0, 2.0], dtype=dtype) var1 = tf.Variable([3.0, 4.0], dtype=dtype) grads0 = tf.constant([0.1, 0.1], dtype=dtype) grads1 = tf.constant([0.01, 0.01], dtype=dtype) ada_opt = tf.train.AdagradOptimizer(3.0) # Apply the optimizer twice. Both applications will use # the same accums. ada_update1 = ada_opt.apply_gradients(zip( [grads0, grads1], [var0, var1])) ada_update2 = ada_opt.apply_gradients(zip( [grads0, grads1], [var0, var1])) self.assertEqual(["accumulator"], ada_opt.get_slot_names()) slot0 = ada_opt.get_slot(var0, "accumulator") self.assertEquals(slot0.get_shape(), var0.get_shape()) slot1 = ada_opt.get_slot(var1, "accumulator") self.assertEquals(slot1.get_shape(), var1.get_shape()) tf.global_variables_initializer().run() # Fetch params to validate initial values. self.assertAllClose([1.0, 2.0], var0.eval()) self.assertAllClose([3.0, 4.0], var1.eval()) # Mix the first and the second adagrad for 3 steps. ada_update1.run() ada_update2.run() ada_update1.run() # Validate updated params (the same as with only 1 Adagrad). self.assertAllCloseAccordingToType( np.array([-1.6026098728179932, -0.6026098728179932]), var0.eval()) self.assertAllCloseAccordingToType( np.array([2.715679168701172, 3.715679168701172]), var1.eval())
Example #20
Source File: adagrad_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testSparseStability(self): for dtype in [tf.half, tf.float32, tf.float64]: with self.test_session(): shape = [1, 6] var0 = tf.Variable( [[0.00872496, -0.106952, 0.110467, 0.226505, -0.0147257, -0.0105945]], dtype=dtype) grads0 = tf.IndexedSlices( tf.constant( [[-5.91278e-05, 5.31673e-05, -2.5779e-06, 4.29153e-05, -8.4877e-05, -9.48906e-05]], shape=shape, dtype=dtype), tf.constant([0]), tf.constant(shape)) ada_opt = tf.train.AdagradOptimizer(1.0, initial_accumulator_value=0.1) ada_update = ada_opt.apply_gradients(zip([grads0], [var0])) self.assertEqual(["accumulator"], ada_opt.get_slot_names()) slot0 = ada_opt.get_slot(var0, "accumulator") init = tf.global_variables_initializer() for _ in range(100): init.run() ada_update.run() self.assertAllCloseAccordingToType( np.array([[0.1, 0.1, 0.1, 0.1, 0.1, 0.1]]), slot0.eval()) self.assertAllCloseAccordingToType( np.array([[0.00891194, -0.10712013, 0.11047515, 0.22636929, - 0.0144573, -0.01029443]]), var0.eval())
Example #21
Source File: adagrad_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testSparseBasic(self): for dtype in [tf.half, tf.float32, tf.float64]: with self.test_session(): var0 = tf.Variable([[1.0], [2.0]], dtype=dtype) var1 = tf.Variable([[3.0], [4.0]], dtype=dtype) grads0 = tf.IndexedSlices( tf.constant([0.1], shape=[1, 1], dtype=dtype), tf.constant([0]), tf.constant([2, 1])) grads1 = tf.IndexedSlices( tf.constant([0.01], shape=[1, 1], dtype=dtype), tf.constant([1]), tf.constant([2, 1])) ada_opt = tf.train.AdagradOptimizer(3.0, initial_accumulator_value=0.1) ada_update = ada_opt.apply_gradients(zip( [grads0, grads1], [var0, var1])) tf.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllClose([[1.0], [2.0]], var0.eval()) self.assertAllClose([[3.0], [4.0]], var1.eval()) # Run 3 step of sgd for _ in range(3): ada_update.run() # Validate updated params self.assertAllCloseAccordingToType( np.array([[-1.6026098728179932], [2.0]]), var0.eval()) self.assertAllCloseAccordingToType( np.array([[3.0], [3.715679168701172]]), var1.eval())
Example #22
Source File: variable_clipping_optimizer_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testSparseDistributed(self): worker, unused_ps = self._setupCluster() for dtype in [tf.half, tf.float32, tf.float64]: with tf.Session(worker.target): var0, var1, update_op = self._setupSparse(True, dtype) self._assertSparseCorrect(var0, var1, update_op)
Example #23
Source File: tpu_random.py From compare_gan with Apache License 2.0 | 5 votes |
def uniform(shape, name=None): """Outputs pseudorandom random values from a uniform distribution. If the _RANDOM_OFFSET_TENSOR is set these output is deterministic based on the seed and the `name` of this operation. If `name` is None this will use the index in the graph instead. There is no `dtype` parameter since the underlying tf.contrib.stateless.stateless_random_uniform only supports tf.half, tf.float32 and tf.float64 and we do not care about tf.half and tf.float64. Patches welcome. Args: shape: A Tensor. Must be one of the following types: int32, int64. The shape of the output tensor. name: A name for the operation (optional). Returns: A Tensor. """ if _RANDOM_OFFSET_TENSOR is None: logging.warning("No global random offset set, falling back to " "un-deterministic pseudorandom numbers for operation %s.", name) return tf.random.uniform(shape, name=name) return tf.contrib.stateless.stateless_random_uniform( shape=shape, seed=_get_seed(name), name=name)
Example #24
Source File: gradient_descent_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testSparseBasic(self): for dtype in [tf.half, tf.float32, tf.float64]: with self.test_session(): var0 = tf.Variable([[1.0], [2.0]], dtype=dtype) var1 = tf.Variable([[3.0], [4.0]], dtype=dtype) grads0 = tf.IndexedSlices( tf.constant([0.1], shape=[1, 1], dtype=dtype), tf.constant([0]), tf.constant([2, 1])) grads1 = tf.IndexedSlices( tf.constant([0.01], shape=[1, 1], dtype=dtype), tf.constant([1]), tf.constant([2, 1])) sgd_op = tf.train.GradientDescentOptimizer(3.0).apply_gradients( zip([grads0, grads1], [var0, var1])) tf.global_variables_initializer().run() # Fetch params to validate initial values self.assertAllCloseAccordingToType([[1.0], [2.0]], var0.eval()) self.assertAllCloseAccordingToType([[3.0], [4.0]], var1.eval()) # Run 1 step of sgd sgd_op.run() # Validate updated params self.assertAllCloseAccordingToType( [[1.0 - 3.0 * 0.1], [2.0]], var0.eval()) self.assertAllCloseAccordingToType( [[3.0], [4.0 - 3.0 * 0.01]], var1.eval())
Example #25
Source File: equal.py From onnx-tensorflow with Apache License 2.0 | 5 votes |
def args_check(cls, node, **kwargs): supported_dtype = [ tf.bfloat16, tf.half, tf.float32, tf.float64, tf.uint8, tf.int8, tf.int16, tf.int32, tf.int64, tf.complex64, tf.quint8, tf.qint8, tf.qint32, tf.string, tf.bool, tf.complex128 ] x = kwargs["tensor_dict"][node.inputs[0]] if x.dtype not in supported_dtype: exception.OP_UNSUPPORTED_EXCEPT( "Equal inputs in " + str(x.dtype) + " which", "Tensorflow")
Example #26
Source File: lamb_test.py From addons with Apache License 2.0 | 5 votes |
def _dtypes_to_test(use_gpu): # Based on issue #347 (https://github.com/tensorflow/addons/issues/347) # tf.half is not registered for 'ResourceScatterUpdate' OpKernel for 'GPU'. # So we have to remove tf.half when testing with gpu. if use_gpu: return [tf.float32, tf.float64] else: return [tf.half, tf.float32, tf.float64]
Example #27
Source File: conditional_gradient_test.py From addons with Apache License 2.0 | 5 votes |
def _dtypes_to_test(use_gpu): # Based on issue #347 in the following link, # "https://github.com/tensorflow/addons/issues/347" # tf.half is not registered for 'ResourceScatterUpdate' OpKernel # for 'GPU' devices. # So we have to remove tf.half when testing with gpu. # The function "_DtypesToTest" is from # "https://github.com/tensorflow/tensorflow/blob/5d4a6cee737a1dc6c20172a1dc1 # 5df10def2df72/tensorflow/python/kernel_tests/conv_ops_3d_test.py#L53-L62" if use_gpu: return [tf.float32, tf.float64] else: return [tf.half, tf.float32, tf.float64]
Example #28
Source File: conditional_gradient_test.py From addons with Apache License 2.0 | 5 votes |
def _dtypes_with_checking_system(use_gpu, system): # Based on issue #36764 in the following link, # "https://github.com/tensorflow/tensorflow/issues/36764" # tf.half is not registered for tf.linalg.svd function on Windows # CPU version. # So we have to remove tf.half when testing with Windows CPU version. if system == "Windows": return [tf.float32, tf.float64] else: return _dtypes_to_test(use_gpu)
Example #29
Source File: gradient_descent_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testBasicResourceVariable(self): for dtype in [tf.half, tf.float32, tf.float64]: with self.test_session(): var0 = resource_variable_ops.ResourceVariable( [1.0, 2.0], dtype=dtype) var1 = resource_variable_ops.ResourceVariable( [3.0, 4.0], dtype=dtype) grads0 = tf.constant([0.1, 0.1], dtype=dtype) grads1 = tf.constant([0.01, 0.01], dtype=dtype) sgd_op = tf.train.GradientDescentOptimizer(3.0).apply_gradients(zip( [grads0, grads1], [var0, var1])) # TODO(apassos) calling initialize_resources on all resources here # doesn't work because the sessions and graph are reused across unit # tests and this would mean trying to reinitialize variables. Figure out # a long-term solution for this. resources.initialize_resources([var0, var1]).run() # Fetch params to validate initial values self.assertAllCloseAccordingToType([1.0, 2.0], var0.eval()) self.assertAllCloseAccordingToType([3.0, 4.0], var1.eval()) # Run 1 step of sgd sgd_op.run() # Validate updated params self.assertAllCloseAccordingToType( [1.0 - 3.0 * 0.1, 2.0 - 3.0 * 0.1], var0.eval()) self.assertAllCloseAccordingToType( [3.0 - 3.0 * 0.01, 4.0 - 3.0 * 0.01], var1.eval())
Example #30
Source File: gradient_descent_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testMinimizeResourceVariable(self): for dtype in [tf.half, tf.float32, tf.float64]: with self.test_session(): var0 = resource_variable_ops.ResourceVariable( [[1.0, 2.0]], dtype=dtype) var1 = resource_variable_ops.ResourceVariable( [3.0], dtype=dtype) x = tf.constant([[4.0], [5.0]], dtype=dtype) pred = tf.matmul(var0, x) + var1 loss = pred*pred sgd_op = tf.train.GradientDescentOptimizer(1.0).minimize(loss) # TODO(apassos) calling initialize_resources on all resources here # doesn't work because the sessions and graph are reused across unit # tests and this would mean trying to reinitialize variables. Figure out # a long-term solution for this. resources.initialize_resources([var0, var1]).run() # Fetch params to validate initial values self.assertAllCloseAccordingToType([[1.0, 2.0]], var0.eval()) self.assertAllCloseAccordingToType([3.0], var1.eval()) # Run 1 step of sgd sgd_op.run() # Validate updated params np_pred = 1.0 * 4.0 + 2.0 * 5.0 + 3.0 np_grad = 2 * np_pred self.assertAllCloseAccordingToType( [[1.0 - np_grad * 4.0, 2.0 - np_grad * 5.0]], var0.eval()) self.assertAllCloseAccordingToType( [3.0 - np_grad], var1.eval())