Python tensorflow.placeholders() Examples
The following are 13
code examples of tensorflow.placeholders().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: utils.py From btgym with GNU Lesser General Public License v3.0 | 6 votes |
def rnn_placeholders(state): """ Given nested [multilayer] RNN state tensor, infers and returns state placeholders. Args: state: tf.nn.lstm zero-state tuple. Returns: tuple of placeholders """ if isinstance(state, tf.contrib.rnn.LSTMStateTuple): c, h = state c = tf.placeholder(tf.float32, tf.TensorShape([None]).concatenate(c.get_shape()[1:]), c.op.name + '_c_pl') h = tf.placeholder(tf.float32, tf.TensorShape([None]).concatenate(h.get_shape()[1:]), h.op.name + '_h_pl') return tf.contrib.rnn.LSTMStateTuple(c, h) elif isinstance(state, tf.Tensor): h = state h = tf.placeholder(tf.float32, tf.TensorShape([None]).concatenate(h.get_shape()[1:]), h.op.name + '_h_pl') return h else: structure = [rnn_placeholders(x) for x in state] return tuple(structure)
Example #2
Source File: utils.py From btgym with GNU Lesser General Public License v3.0 | 6 votes |
def nested_placeholders(ob_space, batch_dim=None, name='nested'): """ Given nested observation space as dictionary of shape tuples, returns nested state batch-wise placeholders. Args: ob_space: [nested] dict of shapes name: name scope batch_dim: batch dimension Returns: nested dictionary of placeholders """ if isinstance(ob_space, dict): out = {key: nested_placeholders(value, batch_dim, name + '_' + key) for key, value in ob_space.items()} return out else: out = tf.placeholder(tf.float32, [batch_dim] + list(ob_space), name + '_pl') return out
Example #3
Source File: conjugate_gradient_optimizer.py From ProMP with MIT License | 6 votes |
def build_graph(self, constraint_obj, target, input_val_dict, reg_coeff): """ Sets the objective function and target weights for the optimize function Args: constraint_obj (tf_op) : constraint objective target (Policy) : Policy whose values we are optimizing over inputs (list) : tuple of tf.placeholders for input data which may be subsampled. The first dimension corresponds to the number of data points reg_coeff (float): regularization coefficient """ self._target = target self.reg_coeff = reg_coeff self._input_ph_dict = input_val_dict params = list(target.get_params().values()) constraint_grads = tf.gradients(constraint_obj, xs=params) for idx, (grad, param) in enumerate(zip(constraint_grads, params)): if grad is None: constraint_grads[idx] = tf.zeros_like(param) constraint_gradient = tf.concat([tf.reshape(grad, [-1]) for grad in constraint_grads], axis=0) self._constraint_gradient = constraint_gradient
Example #4
Source File: base.py From ProMP with MIT License | 6 votes |
def likelihood_ratio_sym(self, obs, action, dist_info_old, policy_params): """ Computes the likelihood p_new(obs|act)/p_old ratio between Args: obs (tf.Tensor): symbolic variable for observations action (tf.Tensor): symbolic variable for actions dist_info_old (dict): dictionary of tf.placeholders with old policy information policy_params (dict): dictionary of the policy parameters (each value is a tf.Tensor) Returns: (tf.Tensor) : likelihood ratio """ distribution_info_new = self.distribution_info_sym(obs, params=policy_params) likelihood_ratio = self._dist.likelihood_ratio_sym(action, dist_info_old, distribution_info_new) return likelihood_ratio
Example #5
Source File: utils.py From btgym with GNU Lesser General Public License v3.0 | 5 votes |
def flat_placeholders(ob_space, batch_dim=None, name='flt'): """ Given nested observation space as dictionary of shape tuples, returns flattened dictionary of batch-wise placeholders. Args: ob_space: [nested dict] of tuples name: name_scope batch_dim: batch dimension Returns: flat dictionary of tf.placeholders """ return flatten_nested(nested_placeholders(ob_space, batch_dim=batch_dim, name=name))
Example #6
Source File: utils.py From btgym with GNU Lesser General Public License v3.0 | 5 votes |
def feed_dict_from_nested(placeholder, value, expand_batch=False): """ Zips flat feed dictionary form nested dictionaries of placeholders and values. Args: placeholder: nested dictionary of placeholders value: nested dictionary of values expand_batch: if true - add fake batch dimension to values Returns: flat feed_dict """ assert_same_structure(placeholder, value, check_types=True) return _flat_from_nested(placeholder, value, expand_batch)
Example #7
Source File: utils.py From btgym with GNU Lesser General Public License v3.0 | 5 votes |
def feed_dict_rnn_context(placeholders, values): """ Creates tf.feed_dict for flat placeholders and nested values. Args: placeholders: flat structure of placeholders values: nested structure of values Returns: flat feed dictionary """ return {key: value for key, value in zip(placeholders, flatten_nested(values))}
Example #8
Source File: legacy_models.py From DeepChatModels with MIT License | 5 votes |
def _get_placeholder_list(name, length, dtype=tf.int32): """ Args: name: prefix of name of each tf.placeholder list item, where i'th name is [name]i. length: number of items (tf.placeholders) in the returned list. Returns: list of tensorflow placeholder of dtype=tf.int32 and unspecified shape. """ return [tf.placeholder(dtype, shape=[None], name=name+str(i)) for i in range(length)]
Example #9
Source File: train.py From darkflow with GNU General Public License v3.0 | 5 votes |
def loss(self, net_out): m = self.meta loss_type = self.meta['type'] assert loss_type in _LOSS_TYPE, \ 'Loss type {} not implemented'.format(loss_type) out = net_out out_shape = out.get_shape() out_dtype = out.dtype.base_dtype _truth = tf.placeholders(out_dtype, out_shape) self.placeholders = dict({ 'truth': _truth }) diff = _truth - out if loss_type in ['sse','12']: loss = tf.nn.l2_loss(diff) elif loss_type == ['smooth']: small = tf.cast(diff < 1, tf.float32) large = 1. - small l1_loss = tf.nn.l1_loss(tf.multiply(diff, large)) l2_loss = tf.nn.l2_loss(tf.multiply(diff, small)) loss = l1_loss + l2_loss elif loss_type in ['sparse', 'l1']: loss = l1_loss(diff) elif loss_type == 'softmax': loss = tf.nn.softmax_cross_entropy_with_logits(logits, y) loss = tf.reduce_mean(loss) elif loss_type == 'svm': assert 'train_size' in m, \ 'Must specify' size = m['train_size'] self.nu = tf.Variable(tf.ones([train_size, num_classes]))
Example #10
Source File: train.py From VideoRecognition-realtime-autotrainer-alerts with GNU General Public License v3.0 | 5 votes |
def loss(self, net_out): m = self.meta loss_type = self.meta['type'] assert loss_type in _LOSS_TYPE, \ 'Loss type {} not implemented'.format(loss_type) out = net_out out_shape = out.get_shape() out_dtype = out.dtype.base_dtype _truth = tf.placeholders(out_dtype, out_shape) self.placeholders = dict({ 'truth': _truth }) diff = _truth - out if loss_type in ['sse', '12']: loss = tf.nn.l2_loss(diff) elif loss_type == ['smooth']: small = tf.cast(diff < 1, tf.float32) large = 1. - small l1_loss = tf.nn.l1_loss(tf.multiply(diff, large)) l2_loss = tf.nn.l2_loss(tf.multiply(diff, small)) loss = l1_loss + l2_loss elif loss_type in ['sparse', 'l1']: loss = l1_loss(diff) elif loss_type == 'softmax': loss = tf.nn.softmax_cross_entropy_with_logits(logits, y) loss = tf.reduce_mean(loss) elif loss_type == 'svm': assert 'train_size' in m, \ 'Must specify' size = m['train_size'] self.nu = tf.Variable(tf.ones([train_size, num_classes]))
Example #11
Source File: conjugate_gradient_optimizer.py From ProMP with MIT License | 5 votes |
def build_graph(self, loss, target, input_ph_dict, leq_constraint): """ Sets the objective function and target weights for the optimize function Args: loss (tf_op) : minimization objective target (Policy) : Policy whose values we are optimizing over inputs (list) : tuple of tf.placeholders for input data which may be subsampled. The first dimension corresponds to the number of data points extra_inputs (list) : tuple of tf.placeholders for hyperparameters (e.g. learning rate, if annealed) leq_constraint (tuple) : A constraint provided as a tuple (f, epsilon), of the form f(*inputs) <= epsilon. """ assert isinstance(loss, tf.Tensor) assert hasattr(target, 'get_params') assert isinstance(input_ph_dict, dict) constraint_objective, constraint_value = leq_constraint self._target = target self._constraint_objective = constraint_objective self._max_constraint_val = constraint_value self._input_ph_dict = input_ph_dict self._loss = loss # build the graph of the hessian vector product (hvp) self._hvp_approach.build_graph(constraint_objective, target, self._input_ph_dict, self._reg_coeff) # build the graph of the gradients params = list(target.get_params().values()) grads = tf.gradients(loss, xs=params) for idx, (grad, param) in enumerate(zip(grads, params)): if grad is None: grads[idx] = tf.zeros_like(param) gradient = tf.concat([tf.reshape(grad, [-1]) for grad in grads], axis=0) self._gradient = gradient
Example #12
Source File: base.py From ProMP with MIT License | 5 votes |
def distribution_info_sym(self, obs_var, params=None): """ Return the symbolic distribution information about the actions. Args: obs_var (placeholder) : symbolic variable for observations params (None or dict) : a dictionary of placeholders that contains information about the state of the policy at the time it received the observation Returns: (dict) : a dictionary of tf placeholders for the policy output distribution """ raise NotImplementedError
Example #13
Source File: base.py From ProMP with MIT License | 5 votes |
def distribution_info_keys(self, obs, state_infos): """ Args: obs (placeholder) : symbolic variable for observations state_infos (dict) : a dictionary of placeholders that contains information about the state of the policy at the time it received the observation Returns: (dict) : a dictionary of tf placeholders for the policy output distribution """ raise NotImplementedError