Python tensorflow.glorot_normal_initializer() Examples
The following are 30
code examples of tensorflow.glorot_normal_initializer().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: layer_utils.py From EasyRL with Apache License 2.0 | 6 votes |
def __init__(self, name, layer_conf): self._name = layer_conf.pop('name', None) or name activation_name = layer_conf.get('activation', None) if activation_name: layer_conf['activation'] = Layer.activation_dict[activation_name] self._kernel_initializer = layer_conf.pop('kernel_initializer', None) if isinstance(self._kernel_initializer, str): assert self._kernel_initializer in ('random_normal_initializer', 'random_uniform_initializer', 'glorot_normal_initializer', 'glorot_uniform_initializer'), \ "Invalid value of kernel_initializer, available value is one of " \ "['random_normal_initializer', 'random_uniform_initializer'," \ "'glorot_normal_initializer', 'glorot_uniform_initializer']" self._kernel_initializer = Layer.initializer_dict[ self._kernel_initializer] elif (isinstance(self._kernel_initializer, int) or isinstance(self._kernel_initializer, float)): self._kernel_initializer = tf.constant_initializer( value=self._kernel_initializer)
Example #2
Source File: net.py From gcdn with MIT License | 6 votes |
def create_gconv_variables(self, name_block, i, in_feat, fnet_feat, out_feat, rank_theta, stride_th1, stride_th2): name = name_block + "_nl_" + str(i) + "_flayer0" self.W[name] = tf.get_variable(name, [in_feat, fnet_feat], dtype=tf.float32, initializer=tf.glorot_normal_initializer()) self.b[name] = tf.get_variable("b_"+name, [1, fnet_feat], dtype=tf.float32, initializer=tf.zeros_initializer()) self.dn_vars = self.dn_vars + [self.W[name], self.b[name]] name = name_block + "_nl_" + str(i) + "_flayer1" self.W[name+"_th1"] = tf.get_variable(name+"_th1", [fnet_feat, stride_th1*rank_theta], dtype=tf.float32, initializer=tf.random_normal_initializer(0,1.0/(np.sqrt(fnet_feat+0.0)*np.sqrt(in_feat+0.0)))) self.b[name+"_th1"] = tf.get_variable(name+"_b_th1", [1, rank_theta, in_feat], dtype=tf.float32, initializer=tf.zeros_initializer()) self.W[name+"_th2"] = tf.get_variable(name+"_th2", [fnet_feat, stride_th2*rank_theta], dtype=tf.float32, initializer=tf.random_normal_initializer(0,1.0/(np.sqrt(fnet_feat+0.0)*np.sqrt(in_feat+0.0)))) self.b[name+"_th2"] = tf.get_variable(name+"_b_th2", [1, rank_theta, out_feat], dtype=tf.float32, initializer=tf.zeros_initializer()) self.W[name+"_thl"] = tf.get_variable(name+"_thl", [fnet_feat, rank_theta], dtype=tf.float32, initializer=tf.random_normal_initializer(0,1.0/np.sqrt(rank_theta+0.0))) self.b[name+"_thl"] = tf.get_variable(name+"_b_thl", [1, rank_theta], dtype=tf.float32, initializer=tf.zeros_initializer()) self.dn_vars = self.dn_vars + [self.W[name+"_th1"],self.b[name+"_th1"],self.W[name+"_th2"],self.b[name+"_th2"],self.W[name+"_thl"],self.b[name+"_thl"]] name = name_block + "_l_" + str(i) self.W[name] = tf.get_variable(name, [3, 3, in_feat, out_feat], dtype=tf.float32, initializer=tf.glorot_normal_initializer()) self.dn_vars = self.dn_vars + [self.W[name]] name = name_block + "_" + str(i) self.b[name] = tf.get_variable(name, [1, out_feat], dtype=tf.float32, initializer=tf.zeros_initializer()) self.dn_vars = self.dn_vars + [self.b[name]]
Example #3
Source File: net_conv2.py From gcdn with MIT License | 6 votes |
def create_gconv_variables(self, name_block, i, in_feat, fnet_feat, out_feat, rank_theta, stride_th1, stride_th2): name = name_block + "_nl_" + str(i) + "_flayer0" self.W[name] = tf.get_variable(name, [in_feat, fnet_feat], dtype=tf.float32, initializer=tf.glorot_normal_initializer()) self.b[name] = tf.get_variable("b_"+name, [1, fnet_feat], dtype=tf.float32, initializer=tf.zeros_initializer()) self.dn_vars = self.dn_vars + [self.W[name], self.b[name]] name = name_block + "_nl_" + str(i) + "_flayer1" self.W[name+"_th1"] = tf.get_variable(name+"_th1", [fnet_feat, stride_th1*rank_theta], dtype=tf.float32, initializer=tf.random_normal_initializer(0,1.0/(np.sqrt(fnet_feat+0.0)*np.sqrt(in_feat+0.0)))) self.b[name+"_th1"] = tf.get_variable(name+"_b_th1", [1, rank_theta, in_feat], dtype=tf.float32, initializer=tf.zeros_initializer()) self.W[name+"_th2"] = tf.get_variable(name+"_th2", [fnet_feat, stride_th2*rank_theta], dtype=tf.float32, initializer=tf.random_normal_initializer(0,1.0/(np.sqrt(fnet_feat+0.0)*np.sqrt(in_feat+0.0)))) self.b[name+"_th2"] = tf.get_variable(name+"_b_th2", [1, rank_theta, out_feat], dtype=tf.float32, initializer=tf.zeros_initializer()) self.W[name+"_thl"] = tf.get_variable(name+"_thl", [fnet_feat, rank_theta], dtype=tf.float32, initializer=tf.random_normal_initializer(0,1.0/np.sqrt(rank_theta+0.0))) self.b[name+"_thl"] = tf.get_variable(name+"_b_thl", [1, rank_theta], dtype=tf.float32, initializer=tf.zeros_initializer()) self.dn_vars = self.dn_vars + [self.W[name+"_th1"],self.b[name+"_th1"],self.W[name+"_th2"],self.b[name+"_th2"],self.W[name+"_thl"],self.b[name+"_thl"]] name = name_block + "_l_" + str(i) self.W[name] = tf.get_variable(name, [3, 3, in_feat, out_feat], dtype=tf.float32, initializer=tf.glorot_normal_initializer()) self.dn_vars = self.dn_vars + [self.W[name]] name = name_block + "_" + str(i) self.b[name] = tf.get_variable(name, [1, out_feat], dtype=tf.float32, initializer=tf.zeros_initializer()) self.dn_vars = self.dn_vars + [self.b[name]]
Example #4
Source File: facebook_conv.py From neuralmonkey with BSD 3-Clause "New" or "Revised" License | 6 votes |
def _residual_conv(self, input_signals: tf.Tensor, name: str): with tf.variable_scope(name): # Initialized as described in the paper. # Note: this may be equivalent to tf.glorot_normal_initializer init_deviat = np.sqrt(4 / self.conv_features) convolution_filters = get_variable( "convolution_filters", [self.kernel_width, self.conv_features, 2 * self.conv_features], initializer=tf.random_normal_initializer(stddev=init_deviat)) bias = get_variable( name="conv_bias", shape=[2 * self.conv_features], initializer=tf.zeros_initializer()) conv = (tf.nn.conv1d(input_signals, convolution_filters, 1, "SAME") + bias) return glu(conv) + input_signals
Example #5
Source File: facebook_conv.py From neuralmonkey with BSD 3-Clause "New" or "Revised" License | 6 votes |
def _residual_conv(self, input_signals: tf.Tensor, name: str): with tf.variable_scope(name): # Initialized as described in the paper. # Note: this may be equivalent to tf.glorot_normal_initializer init_deviat = np.sqrt(4 / self.conv_features) convolution_filters = get_variable( "convolution_filters", [self.kernel_width, self.conv_features, 2 * self.conv_features], initializer=tf.random_normal_initializer(stddev=init_deviat)) bias = get_variable( name="conv_bias", shape=[2 * self.conv_features], initializer=tf.zeros_initializer()) conv = (tf.nn.conv1d(input_signals, convolution_filters, 1, "SAME") + bias) return glu(conv) + input_signals
Example #6
Source File: facebook_conv.py From neuralmonkey with BSD 3-Clause "New" or "Revised" License | 6 votes |
def _residual_conv(self, input_signals: tf.Tensor, name: str): with tf.variable_scope(name): # Initialized as described in the paper. # Note: this may be equivalent to tf.glorot_normal_initializer init_deviat = np.sqrt(4 / self.conv_features) convolution_filters = get_variable( "convolution_filters", [self.kernel_width, self.conv_features, 2 * self.conv_features], initializer=tf.random_normal_initializer(stddev=init_deviat)) bias = get_variable( name="conv_bias", shape=[2 * self.conv_features], initializer=tf.zeros_initializer()) conv = (tf.nn.conv1d(input_signals, convolution_filters, 1, "SAME") + bias) return glu(conv) + input_signals
Example #7
Source File: san.py From SSAN-self-attention-sentiment-analysis-classification with Apache License 2.0 | 6 votes |
def encoder_layer(input_sequence, dropout_keep_prob_tensor): self_attention_layer = multi_head_attention(input_sequence, dropout_keep_prob_tensor) if hp.self_attention_sublayer_residual_and_norm: self_attention_layer = tf.add(self_attention_layer, input_sequence) self_attention_layer = tf.contrib.layers.layer_norm(self_attention_layer) # Add the 2-layer feed-forward with residual connections and layer normalization. Transformer uses it. if hp.ffnn_sublayer: ffnn_sublayer_output = tf.layers.dense(self_attention_layer, hp.model_dim, activation=tf.nn.relu, use_bias=True, kernel_initializer=tf.glorot_normal_initializer(), bias_initializer=tf.zeros_initializer()) ffnn_sublayer_output = tf.layers.dense(ffnn_sublayer_output, hp.model_dim, activation=tf.nn.relu, use_bias=True, kernel_initializer=tf.glorot_normal_initializer(), bias_initializer=tf.zeros_initializer()) if hp.ffnn_sublayer_dropout: ffnn_sublayer_output = tf.nn.dropout(ffnn_sublayer_output, keep_prob=dropout_keep_prob_tensor) # ignore some input info to regularize the model ffnn_sublayer_output = tf.add(ffnn_sublayer_output, self_attention_layer) encoder_layer_output = tf.contrib.layers.layer_norm(ffnn_sublayer_output) else: encoder_layer_output = self_attention_layer return encoder_layer_output
Example #8
Source File: pointfly.py From ldgcnn with MIT License | 5 votes |
def dense(input, output, name, is_training, reuse=None, with_bn=True, activation=tf.nn.elu): dense = tf.layers.dense(input, units=output, activation=activation, kernel_initializer=tf.glorot_normal_initializer(), kernel_regularizer=tf.contrib.layers.l2_regularizer(scale=1.0), reuse=reuse, name=name, use_bias=not with_bn) return batch_normalization(dense, is_training, name + '_bn', reuse) if with_bn else dense
Example #9
Source File: net.py From gcdn with MIT License | 5 votes |
def create_conv_variables(self, name_block, i, in_feat, out_feat): name = name_block + "_c_" + str(i) self.W[name] = tf.get_variable(name, [3, 3, in_feat, out_feat], dtype=tf.float32, initializer=tf.glorot_normal_initializer()) self.dn_vars = self.dn_vars + [self.W[name]] name = name_block + "_cb_" + str(i) self.b[name] = tf.get_variable(name, [1, out_feat], dtype=tf.float32, initializer=tf.zeros_initializer()) self.dn_vars = self.dn_vars + [self.b[name]]
Example #10
Source File: net_conv2.py From gcdn with MIT License | 5 votes |
def create_conv_variables(self, name_block, i, in_feat, out_feat): name = name_block + "_c_" + str(i) self.W[name] = tf.get_variable(name, [3, 3, in_feat, out_feat], dtype=tf.float32, initializer=tf.glorot_normal_initializer()) self.dn_vars = self.dn_vars + [self.W[name]] name = name_block + "_cb_" + str(i) self.b[name] = tf.get_variable(name, [1, out_feat], dtype=tf.float32, initializer=tf.zeros_initializer()) self.dn_vars = self.dn_vars + [self.b[name]]
Example #11
Source File: tf_utils.py From rltf with MIT License | 5 votes |
def init_glorot_normal(): return tf.glorot_normal_initializer()
Example #12
Source File: pointfly.py From ldgcnn with MIT License | 5 votes |
def separable_conv2d(input, output, name, is_training, kernel_size, depth_multiplier=1, reuse=None, with_bn=True, activation=tf.nn.elu): conv2d = tf.layers.separable_conv2d(input, output, kernel_size=kernel_size, strides=(1, 1), padding='VALID', activation=activation, depth_multiplier=depth_multiplier, depthwise_initializer=tf.glorot_normal_initializer(), pointwise_initializer=tf.glorot_normal_initializer(), depthwise_regularizer=tf.contrib.layers.l2_regularizer(scale=1.0), pointwise_regularizer=tf.contrib.layers.l2_regularizer(scale=1.0), reuse=reuse, name=name, use_bias=not with_bn) return batch_normalization(conv2d, is_training, name + '_bn', reuse) if with_bn else conv2d
Example #13
Source File: pointfly.py From ldgcnn with MIT License | 5 votes |
def depthwise_conv2d(input, depth_multiplier, name, is_training, kernel_size, reuse=None, with_bn=True, activation=tf.nn.elu): conv2d = tf.contrib.layers.separable_conv2d(input, num_outputs=None, kernel_size=kernel_size, padding='VALID', activation_fn=activation, depth_multiplier=depth_multiplier, weights_initializer=tf.glorot_normal_initializer(), weights_regularizer=tf.contrib.layers.l2_regularizer(scale=1.0), biases_initializer=None if with_bn else tf.zeros_initializer(), biases_regularizer=None if with_bn else tf.contrib.layers.l2_regularizer( scale=1.0), reuse=reuse, scope=name) return batch_normalization(conv2d, is_training, name + '_bn', reuse) if with_bn else conv2d
Example #14
Source File: pointfly.py From ldgcnn with MIT License | 5 votes |
def conv2d(input, output, name, is_training, kernel_size, reuse=None, with_bn=True, activation=tf.nn.elu): conv2d = tf.layers.conv2d(input, output, kernel_size=kernel_size, strides=(1, 1), padding='VALID', activation=activation, kernel_initializer=tf.glorot_normal_initializer(), kernel_regularizer=tf.contrib.layers.l2_regularizer(scale=1.0), reuse=reuse, name=name, use_bias=not with_bn) return batch_normalization(conv2d, is_training, name + '_bn', reuse) if with_bn else conv2d
Example #15
Source File: pointfly.py From scanobjectnn with MIT License | 5 votes |
def conv2d(input, output, name, is_training, kernel_size, reuse=None, with_bn=True, activation=tf.nn.elu): conv2d = tf.layers.conv2d(input, output, kernel_size=kernel_size, strides=(1, 1), padding='VALID', activation=activation, kernel_initializer=tf.glorot_normal_initializer(), kernel_regularizer=tf.contrib.layers.l2_regularizer(scale=1.0), reuse=reuse, name=name, use_bias=not with_bn) return batch_normalization(conv2d, is_training, name + '_bn', reuse) if with_bn else conv2d
Example #16
Source File: made_utils.py From autoregressive-energy-machines with MIT License | 5 votes |
def masked_dense( inputs, units, num_blocks, mask_type="hidden", kernel_initializer=None, reuse=None, name=None, activation=None, *args, **kwargs ): input_depth = inputs.shape.with_rank_at_least(1)[-1].value if input_depth is None: raise NotImplementedError( "Rightmost dimension must be known prior to graph execution." ) mask = _get_mask(input_depth, units, num_blocks, mask_type).T if kernel_initializer is None: kernel_initializer = tf.glorot_normal_initializer() def masked_initializer(shape, dtype=None, partition_info=None): return mask * kernel_initializer(shape, dtype, partition_info) with tf.name_scope(name, "masked_dense", [inputs, units, num_blocks]): layer = tf.layers.Dense( units, kernel_initializer=masked_initializer, kernel_constraint=lambda x: mask * x, name=name, dtype=inputs.dtype.base_dtype, _scope=name, _reuse=reuse, *args, **kwargs ) return layer.apply(inputs)
Example #17
Source File: cnn_lstm_otc_ocr.py From CNN_LSTM_CTC_Tensorflow with MIT License | 5 votes |
def _conv2d(self, x, name, filter_size, in_channels, out_channels, strides): with tf.variable_scope(name): kernel = tf.get_variable(name='W', shape=[filter_size, filter_size, in_channels, out_channels], dtype=tf.float32, initializer=tf.glorot_uniform_initializer()) # tf.glorot_normal_initializer b = tf.get_variable(name='b', shape=[out_channels], dtype=tf.float32, initializer=tf.constant_initializer()) con2d_op = tf.nn.conv2d(x, kernel, [1, strides, strides, 1], padding='SAME') return tf.nn.bias_add(con2d_op, b)
Example #18
Source File: tag_net.py From Semantics-AssistedVideoCaptioning with MIT License | 5 votes |
def __init__(self): self.graph = tf.Graph() with self.graph.as_default(): self.y = placeholder(tf.float32, [None, n_y]) self.z = placeholder(tf.float32, [None, n_z]) self.keep_prob = placeholder(tf.float32, []) self.Wy1 = tf.get_variable('Wy1', [n_z, 512], tf.float32, glorot_normal_initializer()) self.by1 = tf.get_variable('by1', [512], tf.float32, zeros_initializer()) self.Wy2 = tf.get_variable('Wy2', [512, 512], tf.float32, glorot_normal_initializer()) self.by2 = tf.get_variable('by2', [512], tf.float32, zeros_initializer()) self.Wy3 = tf.get_variable('Wy3', [512, n_y], tf.float32, glorot_normal_initializer()) self.by3 = tf.get_variable('by3', [n_y], tf.float32, zeros_initializer()) z = dropout(self.z, self.keep_prob) h = tf.nn.relu(tf.matmul(z, self.Wy1) + self.by1) h = dropout(h, self.keep_prob) h = tf.nn.relu(tf.matmul(h, self.Wy2) + self.by2) h = dropout(h, self.keep_prob) self.pred = tf.sigmoid(tf.matmul(h, self.Wy3) + self.by3) cost = -self.y * tf.log(self.pred + 1e-6) - (1. - self.y) * tf.log(1. - self.pred + 1e-6) self.cost = tf.reduce_mean(tf.reduce_sum(cost, 1)) self.pred_mask = tf.cast(self.pred >= 0.5, tf.int32) self.tmp = tf.cast(self.y, tf.int32) self.acc_mask = tf.cast(tf.equal(self.tmp, self.pred_mask), tf.float32) self.acc = tf.reduce_mean(self.acc_mask)
Example #19
Source File: scn.py From Semantics-AssistedVideoCaptioning with MIT License | 5 votes |
def _get_variable(self, name, shape): return tf.get_variable(name, shape, tf.float32, tf.glorot_normal_initializer(), collections=["SCN", tf.GraphKeys.LOCAL_VARIABLES, tf.GraphKeys.GLOBAL_VARIABLES])
Example #20
Source File: resnet.py From DeepMind-alphafold-repl with BSD 3-Clause "New" or "Revised" License | 5 votes |
def cnn_with_2dfeature(self, x2d, reuse=False): with tf.variable_scope('discriminator', reuse=reuse) as scope: block_num = 8 filters = 16 kernel_size = [4, 4] act = tf.nn.relu #kernel_initializer = tf.truncated_normal_initializer(stddev=0.01) kernel_initializer = tf.glorot_normal_initializer() #kernel_initializer = None bias_initializer = tf.zeros_initializer() #kernel_regularizer = tf.contrib.layers.l2_regularizer(scale=0.001) kernel_regularizer = None bias_regularizer = None for i in np.arange(block_num): inputs = x2d if i == 0 else conv_ conv_ = tf.layers.conv2d(inputs=inputs, filters=filters, kernel_size=kernel_size, strides=(1,1), padding='same', activation=act, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer) logits = tf.layers.conv2d(inputs=conv_, filters=1, kernel_size=kernel_size, strides=(1,1), padding='same', kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer) logits = tf.reshape(logits, (-1, tf.shape(logits)[1], tf.shape(logits)[2])) return tf.sigmoid(logits), logits
Example #21
Source File: resnet.py From DeepMind-alphafold-repl with BSD 3-Clause "New" or "Revised" License | 5 votes |
def resn_with_2dfeature(self, x2d, reuse=False): with tf.variable_scope('discriminator', reuse=reuse) as scope: block_num = 8 filters = 32 kernel_size = [4, 4] act = tf.nn.relu #kernel_initializer = tf.truncated_normal_initializer(stddev=0.01) kernel_initializer = tf.glorot_normal_initializer() #kernel_initializer = None bias_initializer = tf.zeros_initializer() #kernel_regularizer = tf.contrib.layers.l2_regularizer(scale=0.001) kernel_regularizer = None bias_regularizer = None prev = tf.layers.conv2d(inputs=x2d, filters=filters, kernel_size=kernel_size, strides=(1,1), padding='same', kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer) for i in np.arange(block_num): conv_ = act(prev) conv_ = tf.layers.conv2d(inputs=conv_, filters=filters, kernel_size=kernel_size, strides=(1,1), padding='same', kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer) conv_ = act(conv_) conv_ = tf.layers.conv2d(inputs=conv_, filters=filters, kernel_size=kernel_size, strides=(1,1), padding='same', kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer) prev = tf.add(conv_, prev) logits = tf.layers.conv2d(inputs=prev, filters=1, kernel_size=kernel_size, strides=(1,1), padding='same', kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer) logits = tf.reshape(logits, (-1, tf.shape(logits)[1], tf.shape(logits)[2])) return tf.sigmoid(logits), logits
Example #22
Source File: pointfly.py From scanobjectnn with MIT License | 5 votes |
def depthwise_conv2d(input, depth_multiplier, name, is_training, kernel_size, reuse=None, with_bn=True, activation=tf.nn.elu): conv2d = tf.contrib.layers.separable_conv2d(input, num_outputs=None, kernel_size=kernel_size, padding='VALID', activation_fn=activation, depth_multiplier=depth_multiplier, weights_initializer=tf.glorot_normal_initializer(), weights_regularizer=tf.contrib.layers.l2_regularizer(scale=1.0), biases_initializer=None if with_bn else tf.zeros_initializer(), biases_regularizer=None if with_bn else tf.contrib.layers.l2_regularizer( scale=1.0), reuse=reuse, scope=name) return batch_normalization(conv2d, is_training, name + '_bn', reuse) if with_bn else conv2d
Example #23
Source File: resnet.py From DeepFolding with BSD 3-Clause "New" or "Revised" License | 5 votes |
def cnn_with_2dfeature(self, x2d, reuse=False): with tf.variable_scope('discriminator', reuse=reuse) as scope: block_num = 8 filters = 16 kernel_size = [4, 4] act = tf.nn.relu #kernel_initializer = tf.truncated_normal_initializer(stddev=0.01) kernel_initializer = tf.glorot_normal_initializer() #kernel_initializer = None bias_initializer = tf.zeros_initializer() #kernel_regularizer = tf.contrib.layers.l2_regularizer(scale=0.001) kernel_regularizer = None bias_regularizer = None for i in np.arange(block_num): inputs = x2d if i == 0 else conv_ conv_ = tf.layers.conv2d(inputs=inputs, filters=filters, kernel_size=kernel_size, strides=(1,1), padding='same', activation=act, kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer) logits = tf.layers.conv2d(inputs=conv_, filters=1, kernel_size=kernel_size, strides=(1,1), padding='same', kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer) logits = tf.reshape(logits, (-1, tf.shape(logits)[1], tf.shape(logits)[2])) return tf.sigmoid(logits), logits
Example #24
Source File: resnet.py From DeepFolding with BSD 3-Clause "New" or "Revised" License | 5 votes |
def resn_with_2dfeature(self, x2d, reuse=False): with tf.variable_scope('discriminator', reuse=reuse) as scope: block_num = 8 filters = 32 kernel_size = [4, 4] act = tf.nn.relu #kernel_initializer = tf.truncated_normal_initializer(stddev=0.01) kernel_initializer = tf.glorot_normal_initializer() #kernel_initializer = None bias_initializer = tf.zeros_initializer() #kernel_regularizer = tf.contrib.layers.l2_regularizer(scale=0.001) kernel_regularizer = None bias_regularizer = None prev = tf.layers.conv2d(inputs=x2d, filters=filters, kernel_size=kernel_size, strides=(1,1), padding='same', kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer) for i in np.arange(block_num): conv_ = act(prev) conv_ = tf.layers.conv2d(inputs=conv_, filters=filters, kernel_size=kernel_size, strides=(1,1), padding='same', kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer) conv_ = act(conv_) conv_ = tf.layers.conv2d(inputs=conv_, filters=filters, kernel_size=kernel_size, strides=(1,1), padding='same', kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer) prev = tf.add(conv_, prev) logits = tf.layers.conv2d(inputs=prev, filters=1, kernel_size=kernel_size, strides=(1,1), padding='same', kernel_initializer=kernel_initializer, bias_initializer=bias_initializer, kernel_regularizer=kernel_regularizer, bias_regularizer=bias_regularizer) logits = tf.reshape(logits, (-1, tf.shape(logits)[1], tf.shape(logits)[2])) return tf.sigmoid(logits), logits
Example #25
Source File: models.py From realmix with Apache License 2.0 | 5 votes |
def classifier(self, x, scales, filters, repeat, training, getter=None, **kwargs): del kwargs leaky_relu = functools.partial(tf.nn.leaky_relu, alpha=0.1) bn_args = dict(training=training, momentum=0.999) def conv_args(k, f): return dict(padding='same', kernel_initializer=tf.random_normal_initializer(stddev=tf.rsqrt(0.5 * k * k * f))) def residual(x0, filters, stride=1, activate_before_residual=False): x = leaky_relu(tf.layers.batch_normalization(x0, **bn_args)) if activate_before_residual: x0 = x x = tf.layers.conv2d(x, filters, 3, strides=stride, **conv_args(3, filters)) x = leaky_relu(tf.layers.batch_normalization(x, **bn_args)) x = tf.layers.conv2d(x, filters, 3, **conv_args(3, filters)) if x0.get_shape()[3] != filters: x0 = tf.layers.conv2d(x0, filters, 1, strides=stride, **conv_args(1, filters)) return x0 + x with tf.variable_scope('classify', reuse=tf.AUTO_REUSE, custom_getter=getter): y = tf.layers.conv2d((x - self.dataset.mean) / self.dataset.std, 16, 3, **conv_args(3, 16)) for scale in range(scales): y = residual(y, filters << scale, stride=2 if scale else 1, activate_before_residual=scale == 0) for i in range(repeat - 1): y = residual(y, filters << scale) y = leaky_relu(tf.layers.batch_normalization(y, **bn_args)) y = tf.reduce_mean(y, [1, 2]) logits = tf.layers.dense(y, self.nclass, kernel_initializer=tf.glorot_normal_initializer()) return logits
Example #26
Source File: models.py From mixmatch with Apache License 2.0 | 5 votes |
def classifier(self, x, scales, filters, repeat, training, getter=None, **kwargs): del kwargs leaky_relu = functools.partial(tf.nn.leaky_relu, alpha=0.1) bn_args = dict(training=training, momentum=0.999) def conv_args(k, f): return dict(padding='same', kernel_initializer=tf.random_normal_initializer(stddev=tf.rsqrt(0.5 * k * k * f))) def residual(x0, filters, stride=1, activate_before_residual=False): x = leaky_relu(tf.layers.batch_normalization(x0, **bn_args)) if activate_before_residual: x0 = x x = tf.layers.conv2d(x, filters, 3, strides=stride, **conv_args(3, filters)) x = leaky_relu(tf.layers.batch_normalization(x, **bn_args)) x = tf.layers.conv2d(x, filters, 3, **conv_args(3, filters)) if x0.get_shape()[3] != filters: x0 = tf.layers.conv2d(x0, filters, 1, strides=stride, **conv_args(1, filters)) return x0 + x with tf.variable_scope('classify', reuse=tf.AUTO_REUSE, custom_getter=getter): y = tf.layers.conv2d((x - self.dataset.mean) / self.dataset.std, 16, 3, **conv_args(3, 16)) for scale in range(scales): y = residual(y, filters << scale, stride=2 if scale else 1, activate_before_residual=scale == 0) for i in range(repeat - 1): y = residual(y, filters << scale) y = leaky_relu(tf.layers.batch_normalization(y, **bn_args)) y = tf.reduce_mean(y, [1, 2]) logits = tf.layers.dense(y, self.nclass, kernel_initializer=tf.glorot_normal_initializer()) return logits
Example #27
Source File: san.py From SSAN-self-attention-sentiment-analysis-classification with Apache License 2.0 | 5 votes |
def project_qkv(input_sequnce, output_dim, use_bias_and_activation=True): if use_bias_and_activation: return tf.layers.dense(input_sequnce, output_dim, activation=tf.nn.relu, use_bias=True, kernel_initializer=tf.glorot_normal_initializer(), bias_initializer=tf.zeros_initializer()) else: return tf.layers.dense(input_sequnce, output_dim, activation=tf.nn.relu, use_bias=False, kernel_initializer=tf.glorot_normal_initializer())
Example #28
Source File: san.py From SSAN-self-attention-sentiment-analysis-classification with Apache License 2.0 | 5 votes |
def multi_head_attention(input_sequence, dropout_keep_prob_tensor): ''' Returns a self-attention layer, configured as to the parameters in the global hparams dictionary. ''' # make sure the input word embedding dimension divides by the number of desired heads. assert hp.model_dim % hp.self_attention_heads == 0 qkv_dim = hp.model_dim / hp.self_attention_heads # Construct the Q, K, V matrices q = project_qkv(input_sequence, hp.model_dim, hp.qkv_projections_bias_and_activation) k = project_qkv(input_sequence, hp.model_dim, hp.qkv_projections_bias_and_activation) v = project_qkv(input_sequence, hp.model_dim, hp.qkv_projections_bias_and_activation) qs, ks, vs = split_heads(q, k, v) if hp.use_relative_positions: outputs = dot_product_attention_relative(qs, ks, vs) else: outputs = scaled_dot_product(qs, ks, vs) san_output = concatenate_heads(outputs) if hp.self_attention_sublayer_bias_and_activation: san_output = tf.layers.dense(san_output, hp.model_dim, activation=tf.nn.relu, use_bias=True, kernel_initializer=tf.glorot_normal_initializer(), bias_initializer=tf.zeros_initializer()) else: san_output = tf.layers.dense(san_output, hp.model_dim, activation=tf.nn.relu, use_bias=False, kernel_initializer=tf.glorot_normal_initializer()) if hp.self_attention_sublayer_dropout: san_output = tf.nn.dropout(san_output, keep_prob=(dropout_keep_prob_tensor - 0.2)) # ignore some input info to regularize the model print("multi-head attention dropout more:", 0.2) return san_output
Example #29
Source File: san.py From SSAN-self-attention-sentiment-analysis-classification with Apache License 2.0 | 5 votes |
def transformerClassifier(x_tensor, output_dim, wordIndxToVec_tensor, dropoutKeep_tensor, max_sentence_length): with tf.variable_scope("Embedding_Layer"): emb = tf.nn.embedding_lookup(wordIndxToVec_tensor, x_tensor) # Add positional encodings to the embeddings we feed to the encoder. if hp.include_positional_encoding: with tf.variable_scope("Add_Position_Encoding"): posEnc = positional_encoding(hp.model_dim, max_sentence_length) emb = tf.add(emb, posEnc, name="Add_Positional_Encoding") if hp.input_emb_apply_dropout: with tf.variable_scope("Input_Embeddings_Dropout"): emb = tf.nn.dropout(emb, keep_prob=dropoutKeep_tensor) # ignore some input info to regularize the model for i in range(1, hp.num_layers + 1): with tf.variable_scope("Stack-Layer-{0}".format(i)): encoder_output = encoder_layer(emb, dropout_keep_prob_tensor=dropoutKeep_tensor) emb = encoder_output # Simply average the final sequence position representations to create a fixed size "sentence representation". sentence_representation = tf.reduce_mean(encoder_output, axis=1) # [batch_size, model_dim] with tf.variable_scope("Sentence_Representation_And_Output"): sentence_representation = tf.layers.dense(sentence_representation, hp.model_dim, activation=tf.nn.relu, use_bias=True, kernel_initializer=tf.glorot_normal_initializer(), bias_initializer=tf.zeros_initializer()) if hp.sentence_representation_dropout: sentence_representation = tf.nn.dropout(sentence_representation, keep_prob=dropoutKeep_tensor) # ignore some input info to regularize the model prediction_logits = tf.layers.dense(sentence_representation, output_dim, activation=None, use_bias=False, kernel_initializer=tf.glorot_normal_initializer()) return prediction_logits
Example #30
Source File: reading_comprehension_util.py From reading_comprehension_tf with Apache License 2.0 | 5 votes |
def create_variable_initializer(initializer_type, random_seed=None, data_type=tf.float32): """create variable initializer""" if initializer_type == "zero": initializer = tf.zeros_initializer elif initializer_type == "one": initializer = tf.ones_initializer elif initializer_type == "orthogonal": initializer = tf.orthogonal_initializer(seed=random_seed, dtype=data_type) elif initializer_type == "random_uniform": initializer = tf.random_uniform_initializer(seed=random_seed, dtype=data_type) elif initializer_type == "glorot_uniform": initializer = tf.glorot_uniform_initializer(seed=random_seed, dtype=data_type) elif initializer_type == "xavier_uniform": initializer = tf.contrib.layers.xavier_initializer(uniform=True, seed=random_seed, dtype=tf.float32) elif initializer_type == "random_normal": initializer = tf.random_normal_initializer(seed=random_seed, dtype=data_type) elif initializer_type == "truncated_normal": initializer = tf.truncated_normal_initializer(seed=random_seed, dtype=data_type) elif initializer_type == "glorot_normal": initializer = tf.glorot_normal_initializer(seed=random_seed, dtype=data_type) elif initializer_type == "xavier_normal": initializer = tf.contrib.layers.xavier_initializer(uniform=False, seed=random_seed, dtype=tf.float32) elif initializer_type == "variance_scaling": initializer = tf.contrib.layers.variance_scaling_initializer(factor=2.0, mode='FAN_IN', uniform=False, seed=random_seed, dtype=tf.float32) else: initializer = None return initializer