Python tensorflow.enable_eager_execution() Examples
The following are 30
code examples of tensorflow.enable_eager_execution().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: test_abstract_models.py From delira with GNU Affero General Public License v3.0 | 6 votes |
def _setup_tfeager(*args): import tensorflow as tf tf.enable_eager_execution() tf.reset_default_graph() from delira.models.backends.tf_eager import AbstractTfEagerNetwork class Model(AbstractTfEagerNetwork): def __init__(self): super().__init__() self.dense = tf.keras.layers.Dense(1, activation="relu") def call(self, x: tf.Tensor): return {"pred": self.dense(x)} return Model()
Example #2
Source File: image_test.py From VideoSuperResolution with MIT License | 6 votes |
def test_resize_upsample_tf(self): if BACKEND != 'tensorflow': return import tensorflow as tf tf.enable_eager_execution() from VSR.Backend.TF.Util import upsample Im = Image.open(URL) for X in [Im, Im.convert('L')]: w = X.width h = X.height for ss in [2, 3, 4, 5, 6]: GT = X.resize([w * ss, h * ss], Image.BICUBIC) gt = np.asarray(GT, dtype='float32') / 255 x = tf.constant(np.asarray(X), dtype='float32') / 255 y = upsample(x, ss).numpy().clip(0, 1) self.assertGreaterEqual(self.psnr(y, gt), 30, f"{X.mode}, {ss}")
Example #3
Source File: trainer.py From BERT with Apache License 2.0 | 6 votes |
def main(_): logging.set_verbosity(FLAGS.log_level) if FLAGS.tf_eager: tf.enable_eager_execution() if FLAGS.tf_xla: tf.config.optimizer.set_jit(True) _setup_gin() # Setup output directory output_dir = FLAGS.output_dir or _default_output_dir() trax.log("Using --output_dir %s" % output_dir) output_dir = os.path.expanduser(output_dir) # If on TPU, let JAX know. if FLAGS.use_tpu: jax.config.update("jax_platform_name", "tpu") trax.train(output_dir=output_dir)
Example #4
Source File: image_test.py From VideoSuperResolution with MIT License | 6 votes |
def test_resize_downsample_tf(self): if BACKEND != 'tensorflow': return import tensorflow as tf tf.enable_eager_execution() from VSR.Backend.TF.Util import downsample Im = Image.open(URL) for X in [Im, Im.convert('L')]: w = X.width h = X.height for ss in [2, 4, 6, 8]: w_ = w - w % ss h_ = h - h % ss X = X.crop([0, 0, w_, h_]) GT = X.resize([w_ // ss, h_ // ss], Image.BICUBIC) gt = np.asarray(GT, dtype='float32') / 255 x = tf.constant(np.asarray(X), dtype='float32') / 255 y = downsample(x, ss).numpy().clip(0, 1) self.assertGreaterEqual(self.psnr(y, gt), 30, f"{X.mode}, {ss}")
Example #5
Source File: array_from_dataset.py From causal-text-embeddings with MIT License | 6 votes |
def main(): tf.enable_eager_execution() subreddit_based_sim_dfs(subreddits=subs, treat_strength=beta0, con_strength=beta1, noise_level=gamma, setting=mode, seed=0, base_output_dir=base_output_dir) # print(itr.get_next()["token_ids"].name) # for i in range(1000): # sample = itr.get_next() # # print(np.unique(df['year'])) # print(df.groupby(['year'])['buzzy_title'].agg(np.mean)) # print(df.groupby(['year'])['theorem_referenced'].agg(np.mean)) # print(df.groupby(['year'])['accepted'].agg(np.mean))
Example #6
Source File: core_IT.py From kglib with Apache License 2.0 | 6 votes |
def test_kgcn_runs(self): tf.enable_eager_execution() graph = GraphsTuple(nodes=tf.convert_to_tensor(np.array([[1, 2, 0], [1, 0, 0], [1, 1, 0]], dtype=np.float32)), edges=tf.convert_to_tensor(np.array([[1, 0, 0], [1, 0, 0]], dtype=np.float32)), globals=tf.convert_to_tensor(np.array([[0, 0, 0, 0, 0]], dtype=np.float32)), receivers=tf.convert_to_tensor(np.array([1, 2], dtype=np.int32)), senders=tf.convert_to_tensor(np.array([0, 1], dtype=np.int32)), n_node=tf.convert_to_tensor(np.array([3], dtype=np.int32)), n_edge=tf.convert_to_tensor(np.array([2], dtype=np.int32))) thing_embedder = ThingEmbedder(node_types=['a', 'b', 'c'], type_embedding_dim=5, attr_embedding_dim=6, categorical_attributes={'a': ['a1', 'a2', 'a3'], 'b': ['b1', 'b2', 'b3']}, continuous_attributes={'c': (0, 1)}) role_embedder = RoleEmbedder(num_edge_types=2, type_embedding_dim=5) kgcn = KGCN(thing_embedder, role_embedder, edge_output_size=3, node_output_size=3) kgcn(graph, 2)
Example #7
Source File: post_quantization.py From tpu_models with Apache License 2.0 | 6 votes |
def main(_): # Enables eager context for TF 1.x. TF 2.x will use eager by default. # This is used to conveniently get a representative dataset generator using # TensorFlow training input helper. tf.enable_eager_execution() converter = tf.lite.TFLiteConverter.from_saved_model( FLAGS.saved_model_dir, input_arrays=[FLAGS.input_name], output_arrays=[FLAGS.output_name]) # Chooses a tf.lite.Optimize mode: # https://www.tensorflow.org/api_docs/python/tf/lite/Optimize converter.optimizations = [tf.lite.Optimize.OPTIMIZE_FOR_LATENCY] converter.representative_dataset = tf.lite.RepresentativeDataset( representative_dataset_gen) if FLAGS.require_int8: converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] tflite_buffer = converter.convert() tf.gfile.GFile(FLAGS.output_tflite, "wb").write(tflite_buffer) print("tflite model written to %s" % FLAGS.output_tflite)
Example #8
Source File: typewise_test.py From kglib with Apache License 2.0 | 5 votes |
def setUp(self): tf.enable_eager_execution()
Example #9
Source File: test_tf.py From delira with GNU Affero General Public License v3.0 | 5 votes |
def test_load_save_eager(self): import tensorflow as tf tf.enable_eager_execution() from delira.io.tf import load_checkpoint_eager, save_checkpoint_eager from delira.models import AbstractTfEagerNetwork import numpy as np class DummyNetwork(AbstractTfEagerNetwork): def __init__(self, in_channels, n_outputs): super().__init__(in_channels=in_channels, n_outputs=n_outputs) with tf.init_scope(): self.net = self._build_model(in_channels, n_outputs) @staticmethod def _build_model(in_channels, n_outputs): return tf.keras.models.Sequential( layers=[ tf.keras.layers.Dense( 64, input_shape=in_channels, bias_initializer='glorot_uniform'), tf.keras.layers.ReLU(), tf.keras.layers.Dense( n_outputs, bias_initializer='glorot_uniform')]) def call(self, inputs): return self.net(inputs) net = DummyNetwork((32,), 1) input_tensor = tf.constant(np.random.rand(1, 32).astype(np.float32)) result_pre_save = net(input_tensor) save_checkpoint_eager("./model_eager", model=net) loaded_state = load_checkpoint_eager("./model_eager", model=net) loaded_net = loaded_state["model"] result_post_save = loaded_net(input_tensor) self.assertTrue(np.array_equal(result_post_save, result_pre_save))
Example #10
Source File: tf_wpe.py From nara_wpe with MIT License | 5 votes |
def perform_filter_operation(Y, filter_matrix_conj, taps, delay): """ >>> D, T, taps, delay = 1, 10, 2, 1 >>> tf.enable_eager_execution() >>> Y = tf.ones([D, T]) >>> filter_matrix_conj = tf.ones([taps, D, D]) >>> X = perform_filter_operation_v2(Y, filter_matrix_conj, taps, delay) >>> X.shape TensorShape([Dimension(1), Dimension(10)]) >>> X.numpy() array([[ 1., 0., -1., -1., -1., -1., -1., -1., -1., -1.]], dtype=float32) """ dyn_shape = tf.shape(Y) T = dyn_shape[1] def add_tap(accumulated, tau_minus_delay): new = tf.einsum( 'de,dt', filter_matrix_conj[tau_minus_delay, :, :], Y[:, :(T - delay - tau_minus_delay)] ) paddings = tf.convert_to_tensor([[0, 0], [delay + tau_minus_delay, 0]]) new = tf.pad(new, paddings, "CONSTANT") return accumulated + new reverb_tail = tf.foldl( add_tap, tf.range(0, taps), initializer=tf.zeros_like(Y) ) return Y - reverb_tail
Example #11
Source File: tf2_checkpoint_converter.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 5 votes |
def main(_): tf.enable_eager_execution() convert_checkpoint()
Example #12
Source File: gen_obj2sen_caption.py From unsupervised_captioning with MIT License | 5 votes |
def main(_): pool = multiprocessing.Pool(FLAGS.num_proc, initializer=initializer) os.environ['CUDA_VISIBLE_DEVICES'] = '' import tensorflow as tf tf.enable_eager_execution() with tf.python_io.TFRecordWriter('data/obj2sen_captions.tfrec') as writer: for i in pool.imap(run, image_generator(tf)): writer.write(i)
Example #13
Source File: image.py From camera-trap-classifier with MIT License | 5 votes |
def read_image_from_disk_and_convert_to_jpeg( path_to_image, image_save_quality=75): """ TF-Functions to read and convert jpeg Requires tf.enable_eager_execution() """ with tf.gfile.GFile(path_to_image, 'rb') as f: file_bytes = f.read() image = tf.image.decode_image(file_bytes) jpeg = tf.image.encode_jpeg(image, quality=image_save_quality).numpy() return jpeg
Example #14
Source File: image.py From camera-trap-classifier with MIT License | 5 votes |
def read_image_from_disk_resize_and_convert_to_jpeg( path_to_image, smallest_side, image_save_quality=75): """ TF-Functions to read and convert jpeg Requires tf.enable_eager_execution() """ with tf.gfile.GFile(path_to_image, 'rb') as f: file_bytes = f.read() image = tf.image.decode_image(file_bytes) image = _aspect_preserving_resize(image, smallest_side) image = tf.cast(image, dtype=tf.uint8) jpeg = tf.image.encode_jpeg(image, quality=image_save_quality).numpy() return jpeg
Example #15
Source File: typewise_IT.py From kglib with Apache License 2.0 | 5 votes |
def setUp(self): tf.enable_eager_execution()
Example #16
Source File: color_space_conversion.py From open_model_zoo with Apache License 2.0 | 5 votes |
def __init__(self, config, name, input_shapes=None): super().__init__(config, name, input_shapes) if tf is None: raise ImportError('*tf_convert_image_dtype* operation requires TensorFlow. Please install it before usage') tf.enable_eager_execution() self.converter = tf.image.convert_image_dtype self.dtype = tf.float32
Example #17
Source File: embedding_test.py From kglib with Apache License 2.0 | 5 votes |
def setUp(self): tf.enable_eager_execution()
Example #18
Source File: embedding_test.py From kglib with Apache License 2.0 | 5 votes |
def setUp(self): tf.enable_eager_execution()
Example #19
Source File: test_adapters.py From tfpyth with MIT License | 5 votes |
def test_pytorch_in_tensorflow_eager_mode(): tf.enable_eager_execution() tfe = tf.contrib.eager def pytorch_expr(a, b): return 3 * a + 4 * b * b x = tfpyth.eager_tensorflow_from_torch(pytorch_expr) assert tf.math.equal(x(tf.convert_to_tensor(1.0), tf.convert_to_tensor(3.0)), 39.0) dx = tfe.gradients_function(x) assert all(tf.math.equal(dx(tf.convert_to_tensor(1.0), tf.convert_to_tensor(3.0)), [3.0, 24.0])) tf.disable_eager_execution()
Example #20
Source File: build_test.py From mac-graph with The Unlicense | 5 votes |
def setUpClass(cls): tf.enable_eager_execution() argv = [ '--gqa-paths', 'input_data/raw/test.yaml', '--input-dir', 'input_data/processed/test', '--limit', '100', '--predict-holdback', '0.1', '--eval-holdback', '0.1', ] args = get_args(argv=argv) cls.args = args build(args)
Example #21
Source File: data_reader.py From open_model_zoo with Apache License 2.0 | 5 votes |
def __init__(self, data_source, config=None, **kwargs): super().__init__(data_source, config) if tf is None: raise ImportError('tf backend for image reading requires TensorFlow. Please install it before usage.') tf.enable_eager_execution() def read_func(path): img_raw = tf.read_file(str(path)) img_tensor = tf.image.decode_image(img_raw, channels=3) return img_tensor.numpy() self.read_realisation = read_func
Example #22
Source File: resize.py From open_model_zoo with Apache License 2.0 | 5 votes |
def __init__(self, interpolation): if tf is None: raise ImportError('tf backend for resize operation requires TensorFlow. Please install it before usage.') tf.enable_eager_execution() self._supported_interpolations = { 'BILINEAR': tf.image.ResizeMethod.BILINEAR, 'AREA': tf.image.ResizeMethod.AREA, 'BICUBIC': tf.image.ResizeMethod.BICUBIC, } self.default_interpolation = 'BILINEAR' self._resize = tf.image.resize_images super().__init__(interpolation)
Example #23
Source File: main.py From spotify-tensorflow with Apache License 2.0 | 5 votes |
def main(): tf.enable_eager_execution() tf.app.run(main=train)
Example #24
Source File: memory_data.py From STGAN with MIT License | 5 votes |
def map_func(x): x['a'] = x['a'] * 10 return x # tf.enable_eager_execution()
Example #25
Source File: main.py From spotify-tensorflow with Apache License 2.0 | 5 votes |
def main(): # Enable eager execution for DataFrame endpoint import tensorflow as tf tf.enable_eager_execution() # Set up training data train_data_dir = get_data_dir("train") train_data = os.path.join(train_data_dir, "part-*") schema_path = os.path.join(train_data_dir, "_inferred_schema.pb") df_train_data = next(Datasets.dataframe.examples_via_schema(train_data, schema_path, batch_size=1024)) # the feature keys are ordered alphabetically for determinism label_keys = sorted([l for l in set(df_train_data.columns) if l.startswith("class_name")]) feature_keys = sorted(set(df_train_data.columns).difference(label_keys)) label = df_train_data[label_keys].apply(transform_labels, axis=1) features = df_train_data[feature_keys] # Build model from sklearn.linear_model import LogisticRegression model = LogisticRegression(multi_class="multinomial", solver="newton-cg") model.fit(features, label) # Set up eval data eval_data_dir = get_data_dir("eval") eval_data = os.path.join(eval_data_dir, "part-*") df_eval_data = next(Datasets.dataframe.examples_via_schema(eval_data, schema_path, batch_size=1024)) eval_label = df_eval_data[label_keys].apply(transform_labels, axis=1) eval_features = df_eval_data[feature_keys] # Evaluate model score = model.score(eval_features, eval_label) print("Score is %f" % score)
Example #26
Source File: backend.py From deep_architect with MIT License | 5 votes |
def set_backend(backend): global _backend, _func_dict if _backend is not None: raise RuntimeError('Backend is already specified') if type(backend) is not int or backend < 0 or backend > 4: raise ValueError('value of backend not valid') _backend = backend if backend is TENSORFLOW: from .tensorflow_ops import func_dict elif backend is TENSORFLOW_EAGER: import tensorflow as tf tf_version = tf.__version__.split('.') if int(tf_version[0]) < 1: raise RuntimeError('Tensorflow version too low') if int(tf_version[0]) == 1 and int(tf_version[1]) < 7: raise RuntimeError('Tensorflow version too low') tf.enable_eager_execution() from .tensorflow_eager_ops import func_dict elif backend is TENSORFLOW_KERAS: import tensorflow as tf from .tensorflow_keras_ops import func_dict elif backend is PYTORCH: from .pytorch_ops import func_dict elif backend is KERAS: from .keras_ops import func_dict _func_dict = func_dict if _func_dict is None: raise RuntimeError('Backend %s is not supported' % backend)
Example #27
Source File: test_extend_segments.py From bert-for-tf2 with MIT License | 5 votes |
def setUp(self) -> None: tf.compat.v1.reset_default_graph() tf.compat.v1.enable_eager_execution() print("Eager Execution:", tf.executing_eagerly())
Example #28
Source File: build_test.py From shortest-path with The Unlicense | 5 votes |
def setUpClass(cls): tf.enable_eager_execution() argv = [ '--gqa-paths', 'input_data/raw/test.yaml', '--input-dir', 'input_data/processed/test', '--limit', '100', '--predict-holdback', '0.1', '--eval-holdback', '0.1', ] args = get_args(argv=argv) cls.args = args build(args)
Example #29
Source File: array_from_dataset.py From causal-text-embeddings with MIT License | 5 votes |
def main(): tf.enable_eager_execution() buzzy_title_based_sim_dfs(treat_strength=beta0, con_strength=beta1, noise_level=gamma, setting=mode, seed=0, base_output_dir=base_output_dir)
Example #30
Source File: test_tf.py From delira with GNU Affero General Public License v3.0 | 5 votes |
def setUp(self) -> None: import tensorflow as tf tf.reset_default_graph() if "_eager" in self._testMethodName: tf.enable_eager_execution() else: tf.disable_eager_execution()