Python tensorflow.floor_div() Examples

The following are 20 code examples of tensorflow.floor_div(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module tensorflow , or try the search function .
Example #1
Source File: xception_body.py    From X-Detector with Apache License 2.0 6 votes vote down vote up
def _upsample_rois(scores, bboxes, keep_top_k):
    # upsample with replacement
    # filter out paddings
    bboxes = tf.boolean_mask(bboxes, scores > 0.)
    scores = tf.boolean_mask(scores, scores > 0.)

    scores, bboxes = tf.cond(tf.less(tf.shape(scores)[0], 1), lambda: (tf.constant([1.]), tf.constant([[0.2, 0.2, 0.8, 0.8]])), lambda: (scores, bboxes))
    #scores = tf.Print(scores,[scores])
    def upsampel_impl():
        num_bboxes = tf.shape(scores)[0]
        left_count = keep_top_k - num_bboxes

        select_indices = tf.random_shuffle(tf.range(num_bboxes))[:tf.floormod(left_count, num_bboxes)]
        #### zero
        select_indices = tf.concat([tf.tile(tf.range(num_bboxes), [tf.floor_div(left_count, num_bboxes) + 1]), select_indices], axis = 0)

        return [tf.gather(scores, select_indices), tf.gather(bboxes, select_indices)]
    return tf.cond(tf.shape(scores)[0] < keep_top_k, lambda : upsampel_impl(), lambda : [scores, bboxes]) 
Example #2
Source File: model.py    From cnn_lstm_ctc_ocr with GNU General Public License v3.0 6 votes vote down vote up
def get_sequence_lengths( widths ):    
    """Tensor calculating output sequence length from original image widths"""
    kernel_sizes = [params[1] for params in layer_params]

    with tf.variable_scope("sequence_length"):
        conv1_trim = tf.constant( 2 * (kernel_sizes[0] // 2),
                                  dtype=tf.int32,
                                  name='conv1_trim' )
        one = tf.constant( 1, dtype=tf.int32, name='one' )
        two = tf.constant( 2, dtype=tf.int32, name='two' )
        after_conv1 = tf.subtract( widths, conv1_trim, name='after_conv1' )
        after_pool2 = tf.floor_div( after_conv1, two, name='after_pool2' )
        after_pool4 = tf.subtract( after_pool2, one, name='after_pool4' )
        after_pool6 = tf.subtract( after_pool4, one, name='after_pool6' ) 
        after_pool8 = tf.identity( after_pool6, name='after_pool8' )
    return after_pool8 
Example #3
Source File: facenet.py    From uai-sdk with Apache License 2.0 5 votes vote down vote up
def get_control_flag(control, field):
    return tf.equal(tf.mod(tf.floor_div(control, field), 2), 1) 
Example #4
Source File: facenet.py    From facenet with MIT License 5 votes vote down vote up
def get_control_flag(control, field):
    return tf.equal(tf.mod(tf.floor_div(control, field), 2), 1) 
Example #5
Source File: off.py    From Optical-Flow-Guided-Feature with MIT License 5 votes vote down vote up
def _padding(tensor, out_size):
    t_width = tensor.get_shape()[1]
    delta = tf.subtract(out_size, t_width)
    pad_left = tf.floor_div(delta, 2)
    pad_right = delta - pad_left
    return tf.pad(
        tensor,
        [
            [0, 0],
            [pad_left, pad_right],
            [pad_left, pad_right],
            [0, 0]
        ],
        'CONSTANT'
    ) 
Example #6
Source File: logictensornetworks.py    From logictensornetworks with MIT License 5 votes vote down vote up
def cross_2args(X,Y):
    if X.doms == [] and Y.doms == []:
        result = tf.concat([X,Y],axis=-1)
        result.doms = []
        return result,[X,Y]
    X_Y = set(X.doms) - set(Y.doms)
    Y_X = set(Y.doms) - set(X.doms)
    eX = X
    eX_doms = [x for x in X.doms]
    for y in Y_X:
        eX = tf.expand_dims(eX,0)
        eX_doms = [y] + eX_doms
    eY = Y
    eY_doms = [y for y in Y.doms]
    for x in X_Y:
        eY = tf.expand_dims(eY,-2)
        eY_doms.append(x)
    perm_eY = []
    for y in eY_doms:
        perm_eY.append(eX_doms.index(y))
    eY = tf.transpose(eY,perm=perm_eY + [len(perm_eY)])
    mult_eX = [1]*(len(eX_doms)+1)
    mult_eY = [1]*(len(eY_doms)+1)
    for i in range(len(mult_eX)-1):
        mult_eX[i] = tf.maximum(1,tf.floor_div(tf.shape(eY)[i],tf.shape(eX)[i]))
        mult_eY[i] = tf.maximum(1,tf.floor_div(tf.shape(eX)[i],tf.shape(eY)[i]))
    result1 = tf.tile(eX,mult_eX)
    result2 = tf.tile(eY,mult_eY)
    result = tf.concat([result1,result2],axis=-1)
    result1.doms = eX_doms
    result2.doms = eX_doms
    result.doms = eX_doms
    return result,[result1,result2] 
Example #7
Source File: embed.py    From vehicle-triplet-reid with MIT License 5 votes vote down vote up
def five_crops(image, crop_size):
    """ Returns the central and four corner crops of `crop_size` from `image`. """
    image_size = tf.shape(image)[:2]
    crop_margin = tf.subtract(image_size, crop_size)
    assert_size = tf.assert_non_negative(
        crop_margin, message='Crop size must be smaller or equal to the image size.')
    with tf.control_dependencies([assert_size]):
        top_left = tf.floor_div(crop_margin, 2)
        bottom_right = tf.add(top_left, crop_size)
    center       = image[top_left[0]:bottom_right[0], top_left[1]:bottom_right[1]]
    top_left     = image[:-crop_margin[0], :-crop_margin[1]]
    top_right    = image[:-crop_margin[0], crop_margin[1]:]
    bottom_left  = image[crop_margin[0]:, :-crop_margin[1]]
    bottom_right = image[crop_margin[0]:, crop_margin[1]:]
    return center, top_left, top_right, bottom_left, bottom_right 
Example #8
Source File: facenet.py    From facenet-demo with MIT License 5 votes vote down vote up
def get_control_flag(control, field):
    return tf.equal(tf.mod(tf.floor_div(control, field), 2), 1) 
Example #9
Source File: facenet.py    From facenet-demo with MIT License 5 votes vote down vote up
def get_control_flag(control, field):
    return tf.equal(tf.mod(tf.floor_div(control, field), 2), 1) 
Example #10
Source File: facenet.py    From uai-sdk with Apache License 2.0 5 votes vote down vote up
def get_control_flag(control, field):
    return tf.equal(tf.mod(tf.floor_div(control, field), 2), 1) 
Example #11
Source File: facenet.py    From TNT with GNU General Public License v3.0 5 votes vote down vote up
def get_control_flag(control, field):
    return tf.equal(tf.mod(tf.floor_div(control, field), 2), 1) 
Example #12
Source File: embed.py    From triplet-reid with MIT License 5 votes vote down vote up
def five_crops(image, crop_size):
    """ Returns the central and four corner crops of `crop_size` from `image`. """
    image_size = tf.shape(image)[:2]
    crop_margin = tf.subtract(image_size, crop_size)
    assert_size = tf.assert_non_negative(
        crop_margin, message='Crop size must be smaller or equal to the image size.')
    with tf.control_dependencies([assert_size]):
        top_left = tf.floor_div(crop_margin, 2)
        bottom_right = tf.add(top_left, crop_size)
    center       = image[top_left[0]:bottom_right[0], top_left[1]:bottom_right[1]]
    top_left     = image[:-crop_margin[0], :-crop_margin[1]]
    top_right    = image[:-crop_margin[0], crop_margin[1]:]
    bottom_left  = image[crop_margin[0]:, :-crop_margin[1]]
    bottom_right = image[crop_margin[0]:, crop_margin[1]:]
    return center, top_left, top_right, bottom_left, bottom_right 
Example #13
Source File: facenet.py    From facenet_mtcnn_to_mobile with MIT License 5 votes vote down vote up
def get_control_flag(control, field):
    return tf.equal(tf.mod(tf.floor_div(control, field), 2), 1) 
Example #14
Source File: facenet.py    From facenet_trt with MIT License 5 votes vote down vote up
def get_control_flag(control, field):
    return tf.equal(tf.mod(tf.floor_div(control, field), 2), 1) 
Example #15
Source File: facenet.py    From tindetheus with MIT License 5 votes vote down vote up
def get_control_flag(control, field):
    return tf.equal(tf.mod(tf.floor_div(control, field), 2), 1) 
Example #16
Source File: facenet.py    From Rekognition with GNU General Public License v3.0 5 votes vote down vote up
def get_control_flag(control, field):

    logger.info(msg="get_control_flag called")
    return tf.equal(tf.mod(tf.floor_div(control, field), 2), 1) 
Example #17
Source File: facenet.py    From TNT with GNU General Public License v3.0 5 votes vote down vote up
def get_control_flag(control, field):
    return tf.equal(tf.mod(tf.floor_div(control, field), 2), 1) 
Example #18
Source File: facenet.py    From TNT with GNU General Public License v3.0 5 votes vote down vote up
def get_control_flag(control, field):
    return tf.equal(tf.mod(tf.floor_div(control, field), 2), 1) 
Example #19
Source File: model.py    From cnn_lstm_ctc_ocr_for_ICPR with GNU General Public License v3.0 4 votes vote down vote up
def convnet_layers(inputs, widths, mode):# image, width, mode
    """Build convolutional network layers attached to the given input tensor"""

    training = (mode == learn.ModeKeys.TRAIN)

    # inputs should have shape [ ?, 32, ?, 1 ]
    with tf.variable_scope("convnet"): # h,w
        inputs=gaussian_noise_layer(inputs,1)
        inputs=tf.image.random_brightness(inputs,32./255)
        inputs=tf.image.random_contrast(inputs,lower=0.5,upper=1.5)
        # inputs=tf.image.random_hue(inputs,max_delta=0.2)

        conv1 = conv_layer(inputs, layer_params[0], training ) # 30,30
        conv2 = conv_layer( conv1, layer_params[1], training ) # 30,30
        pool2 = pool_layer( conv2, 2, 'valid', 'pool2')        # 15,15
        conv3 = conv_layer( pool2, layer_params[2], training ) # 15,15
        conv4 = conv_layer( conv3, layer_params[3], training ) # 15,15
        pool4 = pool_layer( conv4, 1, 'valid', 'pool4' )       # 7,14
        conv5 = conv_layer( pool4, layer_params[4], training ) # 7,14
        conv6 = conv_layer( conv5, layer_params[5], training ) # 7,14
        pool6 = pool_layer( conv6, 1, 'valid', 'pool6')        # 3,13
        conv7 = conv_layer( pool6, layer_params[6], training ) # 3,13
        conv8 = conv_layer( conv7, layer_params[7], training ) # 3,13
        pool8 = tf.layers.max_pooling2d( conv8, [3,1], [3,1], 
                                   padding='valid', name='pool8') # 1,13
        features = tf.squeeze(pool8, axis=1, name='features') # squeeze row dim

        kernel_sizes = [ params[1] for params in layer_params]

        # Calculate resulting sequence length from original image widths
        conv1_trim = tf.constant( 2 * (kernel_sizes[0] // 2),
                                  dtype=tf.int32,
                                  name='conv1_trim')
        one = tf.constant(1, dtype=tf.int32, name='one')
        two = tf.constant(2, dtype=tf.int32, name='two')
        after_conv1 = tf.subtract( widths, conv1_trim)
        after_pool2 = tf.floor_div( after_conv1, two )
        after_pool4 = tf.subtract(after_pool2, one)
        after_pool6 = tf.subtract(after_pool4, one) 
        after_pool8 = after_pool6

        sequence_length = tf.reshape(after_pool8,[-1], name='seq_len') # Vectorize

        return features,sequence_length 
Example #20
Source File: denseNet.py    From cnn_lstm_ctc_ocr_for_ICPR with GNU General Public License v3.0 4 votes vote down vote up
def Dense_net(input_x,widths,mode):

    training = (mode == learn.ModeKeys.TRAIN)
    # input_x:[ 32 ,width , 3 ]
    x = conv_layer(input_x,filter=filter,kernel=[3,3],stride=1,layer_name='conv0')
    # x = Max_Pooling(x,pool_size=[3,3],stride=2)
    # x: [32,width,64]
    x = dense_block(input_x = x,nb_layers=4,layer_name='dense_1',training=training)
    # x: [32,width,64+4*32=192]
    x = transition_layer(x,128,scope='trans_1',training=training)#transition_layer(x,filters,scope,training)
    # x: [16,width-1,128]
    x = dense_block(input_x = x,nb_layers=6,layer_name='dense_2',training=training)
    # x: [16,width,128+6*32=320]
    x = transition_layer(x,256,scope='trans_2',training=training)
    # x: [8,width-1,256]
    x = Max_Pooling(x,[2,2],2)
    # x:[4,width/2,256]
    x = dense_block(input_x =x ,nb_layers=8,layer_name='dense_3',training=training)
    # x: [4,width,256+8*32=512]
    x = transition_layer(x,512,scope='trans_3',training=training)
    # x: [4,width-1,512]

    x = Batch_Normalization(x,training=training,scope='linear_batch')
    x = Relu(x)
    # x = Global_Average_Pooling(x)  # cifar-10中用于分类
    x = Max_Pooling(x,[2,2],[2,1])
    # x: [1,width/2,512]

    features = tf.squeeze(x,axis=1,name='features')
    # calculate resulting sequence length
    one = tf.constant(1, dtype=tf.int32, name='one')
    two = tf.constant(2, dtype=tf.int32, name='two')

    after_conv0=widths
    after_dense_1=after_conv0
    after_trans_1=tf.subtract(after_dense_1,one)
    after_dense_2=after_trans_1
    after_trans_2=tf.subtract(after_dense_2,one)
    after_first_maxpool=tf.floor_div(after_trans_2, two )#向下取整
    after_dense_3=after_first_maxpool
    after_trans_3=tf.subtract(after_dense_3,one)
    after_second_maxpool=tf.subtract(after_trans_3,one)
    sequence_length = tf.reshape(after_second_maxpool,[-1], name='seq_len')

    return features,sequence_length