Python tensorflow.floor_div() Examples
The following are 20
code examples of tensorflow.floor_div().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: xception_body.py From X-Detector with Apache License 2.0 | 6 votes |
def _upsample_rois(scores, bboxes, keep_top_k): # upsample with replacement # filter out paddings bboxes = tf.boolean_mask(bboxes, scores > 0.) scores = tf.boolean_mask(scores, scores > 0.) scores, bboxes = tf.cond(tf.less(tf.shape(scores)[0], 1), lambda: (tf.constant([1.]), tf.constant([[0.2, 0.2, 0.8, 0.8]])), lambda: (scores, bboxes)) #scores = tf.Print(scores,[scores]) def upsampel_impl(): num_bboxes = tf.shape(scores)[0] left_count = keep_top_k - num_bboxes select_indices = tf.random_shuffle(tf.range(num_bboxes))[:tf.floormod(left_count, num_bboxes)] #### zero select_indices = tf.concat([tf.tile(tf.range(num_bboxes), [tf.floor_div(left_count, num_bboxes) + 1]), select_indices], axis = 0) return [tf.gather(scores, select_indices), tf.gather(bboxes, select_indices)] return tf.cond(tf.shape(scores)[0] < keep_top_k, lambda : upsampel_impl(), lambda : [scores, bboxes])
Example #2
Source File: model.py From cnn_lstm_ctc_ocr with GNU General Public License v3.0 | 6 votes |
def get_sequence_lengths( widths ): """Tensor calculating output sequence length from original image widths""" kernel_sizes = [params[1] for params in layer_params] with tf.variable_scope("sequence_length"): conv1_trim = tf.constant( 2 * (kernel_sizes[0] // 2), dtype=tf.int32, name='conv1_trim' ) one = tf.constant( 1, dtype=tf.int32, name='one' ) two = tf.constant( 2, dtype=tf.int32, name='two' ) after_conv1 = tf.subtract( widths, conv1_trim, name='after_conv1' ) after_pool2 = tf.floor_div( after_conv1, two, name='after_pool2' ) after_pool4 = tf.subtract( after_pool2, one, name='after_pool4' ) after_pool6 = tf.subtract( after_pool4, one, name='after_pool6' ) after_pool8 = tf.identity( after_pool6, name='after_pool8' ) return after_pool8
Example #3
Source File: facenet.py From uai-sdk with Apache License 2.0 | 5 votes |
def get_control_flag(control, field): return tf.equal(tf.mod(tf.floor_div(control, field), 2), 1)
Example #4
Source File: facenet.py From facenet with MIT License | 5 votes |
def get_control_flag(control, field): return tf.equal(tf.mod(tf.floor_div(control, field), 2), 1)
Example #5
Source File: off.py From Optical-Flow-Guided-Feature with MIT License | 5 votes |
def _padding(tensor, out_size): t_width = tensor.get_shape()[1] delta = tf.subtract(out_size, t_width) pad_left = tf.floor_div(delta, 2) pad_right = delta - pad_left return tf.pad( tensor, [ [0, 0], [pad_left, pad_right], [pad_left, pad_right], [0, 0] ], 'CONSTANT' )
Example #6
Source File: logictensornetworks.py From logictensornetworks with MIT License | 5 votes |
def cross_2args(X,Y): if X.doms == [] and Y.doms == []: result = tf.concat([X,Y],axis=-1) result.doms = [] return result,[X,Y] X_Y = set(X.doms) - set(Y.doms) Y_X = set(Y.doms) - set(X.doms) eX = X eX_doms = [x for x in X.doms] for y in Y_X: eX = tf.expand_dims(eX,0) eX_doms = [y] + eX_doms eY = Y eY_doms = [y for y in Y.doms] for x in X_Y: eY = tf.expand_dims(eY,-2) eY_doms.append(x) perm_eY = [] for y in eY_doms: perm_eY.append(eX_doms.index(y)) eY = tf.transpose(eY,perm=perm_eY + [len(perm_eY)]) mult_eX = [1]*(len(eX_doms)+1) mult_eY = [1]*(len(eY_doms)+1) for i in range(len(mult_eX)-1): mult_eX[i] = tf.maximum(1,tf.floor_div(tf.shape(eY)[i],tf.shape(eX)[i])) mult_eY[i] = tf.maximum(1,tf.floor_div(tf.shape(eX)[i],tf.shape(eY)[i])) result1 = tf.tile(eX,mult_eX) result2 = tf.tile(eY,mult_eY) result = tf.concat([result1,result2],axis=-1) result1.doms = eX_doms result2.doms = eX_doms result.doms = eX_doms return result,[result1,result2]
Example #7
Source File: embed.py From vehicle-triplet-reid with MIT License | 5 votes |
def five_crops(image, crop_size): """ Returns the central and four corner crops of `crop_size` from `image`. """ image_size = tf.shape(image)[:2] crop_margin = tf.subtract(image_size, crop_size) assert_size = tf.assert_non_negative( crop_margin, message='Crop size must be smaller or equal to the image size.') with tf.control_dependencies([assert_size]): top_left = tf.floor_div(crop_margin, 2) bottom_right = tf.add(top_left, crop_size) center = image[top_left[0]:bottom_right[0], top_left[1]:bottom_right[1]] top_left = image[:-crop_margin[0], :-crop_margin[1]] top_right = image[:-crop_margin[0], crop_margin[1]:] bottom_left = image[crop_margin[0]:, :-crop_margin[1]] bottom_right = image[crop_margin[0]:, crop_margin[1]:] return center, top_left, top_right, bottom_left, bottom_right
Example #8
Source File: facenet.py From facenet-demo with MIT License | 5 votes |
def get_control_flag(control, field): return tf.equal(tf.mod(tf.floor_div(control, field), 2), 1)
Example #9
Source File: facenet.py From facenet-demo with MIT License | 5 votes |
def get_control_flag(control, field): return tf.equal(tf.mod(tf.floor_div(control, field), 2), 1)
Example #10
Source File: facenet.py From uai-sdk with Apache License 2.0 | 5 votes |
def get_control_flag(control, field): return tf.equal(tf.mod(tf.floor_div(control, field), 2), 1)
Example #11
Source File: facenet.py From TNT with GNU General Public License v3.0 | 5 votes |
def get_control_flag(control, field): return tf.equal(tf.mod(tf.floor_div(control, field), 2), 1)
Example #12
Source File: embed.py From triplet-reid with MIT License | 5 votes |
def five_crops(image, crop_size): """ Returns the central and four corner crops of `crop_size` from `image`. """ image_size = tf.shape(image)[:2] crop_margin = tf.subtract(image_size, crop_size) assert_size = tf.assert_non_negative( crop_margin, message='Crop size must be smaller or equal to the image size.') with tf.control_dependencies([assert_size]): top_left = tf.floor_div(crop_margin, 2) bottom_right = tf.add(top_left, crop_size) center = image[top_left[0]:bottom_right[0], top_left[1]:bottom_right[1]] top_left = image[:-crop_margin[0], :-crop_margin[1]] top_right = image[:-crop_margin[0], crop_margin[1]:] bottom_left = image[crop_margin[0]:, :-crop_margin[1]] bottom_right = image[crop_margin[0]:, crop_margin[1]:] return center, top_left, top_right, bottom_left, bottom_right
Example #13
Source File: facenet.py From facenet_mtcnn_to_mobile with MIT License | 5 votes |
def get_control_flag(control, field): return tf.equal(tf.mod(tf.floor_div(control, field), 2), 1)
Example #14
Source File: facenet.py From facenet_trt with MIT License | 5 votes |
def get_control_flag(control, field): return tf.equal(tf.mod(tf.floor_div(control, field), 2), 1)
Example #15
Source File: facenet.py From tindetheus with MIT License | 5 votes |
def get_control_flag(control, field): return tf.equal(tf.mod(tf.floor_div(control, field), 2), 1)
Example #16
Source File: facenet.py From Rekognition with GNU General Public License v3.0 | 5 votes |
def get_control_flag(control, field): logger.info(msg="get_control_flag called") return tf.equal(tf.mod(tf.floor_div(control, field), 2), 1)
Example #17
Source File: facenet.py From TNT with GNU General Public License v3.0 | 5 votes |
def get_control_flag(control, field): return tf.equal(tf.mod(tf.floor_div(control, field), 2), 1)
Example #18
Source File: facenet.py From TNT with GNU General Public License v3.0 | 5 votes |
def get_control_flag(control, field): return tf.equal(tf.mod(tf.floor_div(control, field), 2), 1)
Example #19
Source File: model.py From cnn_lstm_ctc_ocr_for_ICPR with GNU General Public License v3.0 | 4 votes |
def convnet_layers(inputs, widths, mode):# image, width, mode """Build convolutional network layers attached to the given input tensor""" training = (mode == learn.ModeKeys.TRAIN) # inputs should have shape [ ?, 32, ?, 1 ] with tf.variable_scope("convnet"): # h,w inputs=gaussian_noise_layer(inputs,1) inputs=tf.image.random_brightness(inputs,32./255) inputs=tf.image.random_contrast(inputs,lower=0.5,upper=1.5) # inputs=tf.image.random_hue(inputs,max_delta=0.2) conv1 = conv_layer(inputs, layer_params[0], training ) # 30,30 conv2 = conv_layer( conv1, layer_params[1], training ) # 30,30 pool2 = pool_layer( conv2, 2, 'valid', 'pool2') # 15,15 conv3 = conv_layer( pool2, layer_params[2], training ) # 15,15 conv4 = conv_layer( conv3, layer_params[3], training ) # 15,15 pool4 = pool_layer( conv4, 1, 'valid', 'pool4' ) # 7,14 conv5 = conv_layer( pool4, layer_params[4], training ) # 7,14 conv6 = conv_layer( conv5, layer_params[5], training ) # 7,14 pool6 = pool_layer( conv6, 1, 'valid', 'pool6') # 3,13 conv7 = conv_layer( pool6, layer_params[6], training ) # 3,13 conv8 = conv_layer( conv7, layer_params[7], training ) # 3,13 pool8 = tf.layers.max_pooling2d( conv8, [3,1], [3,1], padding='valid', name='pool8') # 1,13 features = tf.squeeze(pool8, axis=1, name='features') # squeeze row dim kernel_sizes = [ params[1] for params in layer_params] # Calculate resulting sequence length from original image widths conv1_trim = tf.constant( 2 * (kernel_sizes[0] // 2), dtype=tf.int32, name='conv1_trim') one = tf.constant(1, dtype=tf.int32, name='one') two = tf.constant(2, dtype=tf.int32, name='two') after_conv1 = tf.subtract( widths, conv1_trim) after_pool2 = tf.floor_div( after_conv1, two ) after_pool4 = tf.subtract(after_pool2, one) after_pool6 = tf.subtract(after_pool4, one) after_pool8 = after_pool6 sequence_length = tf.reshape(after_pool8,[-1], name='seq_len') # Vectorize return features,sequence_length
Example #20
Source File: denseNet.py From cnn_lstm_ctc_ocr_for_ICPR with GNU General Public License v3.0 | 4 votes |
def Dense_net(input_x,widths,mode): training = (mode == learn.ModeKeys.TRAIN) # input_x:[ 32 ,width , 3 ] x = conv_layer(input_x,filter=filter,kernel=[3,3],stride=1,layer_name='conv0') # x = Max_Pooling(x,pool_size=[3,3],stride=2) # x: [32,width,64] x = dense_block(input_x = x,nb_layers=4,layer_name='dense_1',training=training) # x: [32,width,64+4*32=192] x = transition_layer(x,128,scope='trans_1',training=training)#transition_layer(x,filters,scope,training) # x: [16,width-1,128] x = dense_block(input_x = x,nb_layers=6,layer_name='dense_2',training=training) # x: [16,width,128+6*32=320] x = transition_layer(x,256,scope='trans_2',training=training) # x: [8,width-1,256] x = Max_Pooling(x,[2,2],2) # x:[4,width/2,256] x = dense_block(input_x =x ,nb_layers=8,layer_name='dense_3',training=training) # x: [4,width,256+8*32=512] x = transition_layer(x,512,scope='trans_3',training=training) # x: [4,width-1,512] x = Batch_Normalization(x,training=training,scope='linear_batch') x = Relu(x) # x = Global_Average_Pooling(x) # cifar-10中用于分类 x = Max_Pooling(x,[2,2],[2,1]) # x: [1,width/2,512] features = tf.squeeze(x,axis=1,name='features') # calculate resulting sequence length one = tf.constant(1, dtype=tf.int32, name='one') two = tf.constant(2, dtype=tf.int32, name='two') after_conv0=widths after_dense_1=after_conv0 after_trans_1=tf.subtract(after_dense_1,one) after_dense_2=after_trans_1 after_trans_2=tf.subtract(after_dense_2,one) after_first_maxpool=tf.floor_div(after_trans_2, two )#向下取整 after_dense_3=after_first_maxpool after_trans_3=tf.subtract(after_dense_3,one) after_second_maxpool=tf.subtract(after_trans_3,one) sequence_length = tf.reshape(after_second_maxpool,[-1], name='seq_len') return features,sequence_length