Python tensorflow.complex128() Examples
The following are 30
code examples of tensorflow.complex128().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: constant_op_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testDtype(self): with self.test_session(): d = tf.fill([2, 3], 12., name="fill") self.assertEqual(d.get_shape(), [2, 3]) # Test default type for both constant size and dynamic size z = tf.zeros([2, 3]) self.assertEqual(z.dtype, tf.float32) self.assertEqual([2, 3], z.get_shape()) self.assertAllEqual(z.eval(), np.zeros([2, 3])) z = tf.zeros(tf.shape(d)) self.assertEqual(z.dtype, tf.float32) self.assertEqual([2, 3], z.get_shape()) self.assertAllEqual(z.eval(), np.zeros([2, 3])) # Test explicit type control for dtype in [tf.float32, tf.float64, tf.int32, tf.uint8, tf.int16, tf.int8, tf.complex64, tf.complex128, tf.int64, tf.bool]: z = tf.zeros([2, 3], dtype=dtype) self.assertEqual(z.dtype, dtype) self.assertEqual([2, 3], z.get_shape()) self.assertAllEqual(z.eval(), np.zeros([2, 3])) z = tf.zeros(tf.shape(d), dtype=dtype) self.assertEqual(z.dtype, dtype) self.assertEqual([2, 3], z.get_shape()) self.assertAllEqual(z.eval(), np.zeros([2, 3]))
Example #2
Source File: tensor_util_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testComplex128N(self): t = tensor_util.make_tensor_proto([(1+2j), (3+4j), (5+6j)], shape=[1, 3], dtype=tf.complex128) self.assertProtoEquals(""" dtype: DT_COMPLEX128 tensor_shape { dim { size: 1 } dim { size: 3 } } dcomplex_val: 1 dcomplex_val: 2 dcomplex_val: 3 dcomplex_val: 4 dcomplex_val: 5 dcomplex_val: 6 """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.complex128, a.dtype) self.assertAllEqual(np.array([[(1+2j), (3+4j), (5+6j)]]), a)
Example #3
Source File: tensor_util_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testComplex128NpArray(self): t = tensor_util.make_tensor_proto( np.array([[(1+2j), (3+4j)], [(5+6j), (7+8j)]]), dtype=tf.complex128) # scomplex_val are real_0, imag_0, real_1, imag_1, ... self.assertProtoEquals(""" dtype: DT_COMPLEX128 tensor_shape { dim { size: 2 } dim { size: 2 } } dcomplex_val: 1 dcomplex_val: 2 dcomplex_val: 3 dcomplex_val: 4 dcomplex_val: 5 dcomplex_val: 6 dcomplex_val: 7 dcomplex_val: 8 """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.complex128, a.dtype) self.assertAllEqual(np.array([[(1+2j), (3+4j)], [(5+6j), (7+8j)]]), a)
Example #4
Source File: math_grad_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def _testGrad(self, shape, dtype=None, max_error=None, bias=None, sigma=None): np.random.seed(7) if dtype in (tf.complex64, tf.complex128): value = tf.complex(self._biasedRandN(shape, bias=bias, sigma=sigma), self._biasedRandN(shape, bias=bias, sigma=sigma)) else: value = tf.convert_to_tensor(self._biasedRandN(shape, bias=bias), dtype=dtype) with self.test_session(use_gpu=True): if dtype in (tf.complex64, tf.complex128): output = tf.complex_abs(value) else: output = tf.abs(value) error = tf.test.compute_gradient_error( value, shape, output, output.get_shape().as_list()) self.assertLess(error, max_error)
Example #5
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testTensorCompareTensor(self): x = np.linspace(-15, 15, 6).reshape(1, 3, 2) y = np.linspace(20, -10, 6).reshape(1, 3, 2) for t in [np.float16, np.float32, np.float64, np.int32, np.int64]: xt = x.astype(t) yt = y.astype(t) self._compareBoth(xt, yt, np.less, tf.less) self._compareBoth(xt, yt, np.less_equal, tf.less_equal) self._compareBoth(xt, yt, np.greater, tf.greater) self._compareBoth(xt, yt, np.greater_equal, tf.greater_equal) self._compareBoth(xt, yt, np.equal, tf.equal) self._compareBoth(xt, yt, np.not_equal, tf.not_equal) # TODO(zhifengc): complex64 doesn't work on GPU yet. for t in [np.complex64, np.complex128]: self._compareCpu(x.astype(t), y.astype(t), np.equal, tf.equal) self._compareCpu(x.astype(t), y.astype(t), np.not_equal, tf.not_equal)
Example #6
Source File: segment_reduction_ops_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testValues(self): dtypes = [tf.float32, tf.float64, tf.int64, tf.int32, tf.complex64, tf.complex128] indices_flat = np.array([0, 4, 0, 8, 3, 8, 4, 7, 7, 3]) num_segments = 12 for indices in indices_flat, indices_flat.reshape(5, 2): shape = indices.shape + (2,) for dtype in dtypes: with self.test_session(use_gpu=self.use_gpu): tf_x, np_x = self._input(shape, dtype=dtype) np_ans = self._segmentReduce(indices, np_x, np.add, op2=None, num_out_rows=num_segments) s = tf.unsorted_segment_sum(data=tf_x, segment_ids=indices, num_segments=num_segments) tf_ans = s.eval() self._assertAllClose(indices, np_ans, tf_ans) self.assertShapeEqual(np_ans, s)
Example #7
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def _testBCastByFunc(self, funcs, xs, ys): dtypes = [ np.float16, np.float32, np.float64, np.int32, np.int64, np.complex64, np.complex128, ] for dtype in dtypes: for (np_func, tf_func) in funcs: if (dtype in (np.complex64, np.complex128) and tf_func in (_FLOORDIV, tf.floordiv)): continue # floordiv makes no sense for complex numbers self._compareBCast(xs, ys, dtype, np_func, tf_func) self._compareBCast(ys, xs, dtype, np_func, tf_func)
Example #8
Source File: cwise_ops_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def _compareBCast(self, xs, ys, dtype, np_func, tf_func): if dtype in (np.complex64, np.complex128): x = (1 + np.linspace(0, 2 + 3j, np.prod(xs))).astype(dtype).reshape(xs) y = (1 + np.linspace(0, 2 - 2j, np.prod(ys))).astype(dtype).reshape(ys) else: x = (1 + np.linspace(0, 5, np.prod(xs))).astype(dtype).reshape(xs) y = (1 + np.linspace(0, 5, np.prod(ys))).astype(dtype).reshape(ys) self._compareCpu(x, y, np_func, tf_func) if x.dtype in (np.float16, np.float32, np.float64, np.complex64, np.complex128): if tf_func not in (_FLOORDIV, tf.floordiv): if x.dtype == np.float16: # Compare fp16 theoretical gradients to fp32 numerical gradients, # since fp16 numerical gradients are too imprecise unless great # care is taken with choosing the inputs and the delta. This is # a weaker check (in particular, it does not test the op itself, # only its gradient), but it's much better than nothing. self._compareGradientX(x, y, np_func, tf_func, np.float) self._compareGradientY(x, y, np_func, tf_func, np.float) else: self._compareGradientX(x, y, np_func, tf_func) self._compareGradientY(x, y, np_func, tf_func) self._compareGpu(x, y, np_func, tf_func) # TODO(josh11b,vrv): Refactor this to use parameterized tests.
Example #9
Source File: cast_op_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def _toDataType(self, dtype): """Returns TensorFlow data type for numpy type.""" if dtype == np.float32: return tf.float32 elif dtype == np.float64: return tf.float64 elif dtype == np.int32: return tf.int32 elif dtype == np.int64: return tf.int64 elif dtype == np.bool: return tf.bool elif dtype == np.complex64: return tf.complex64 elif dtype == np.complex128: return tf.complex128 else: return None
Example #10
Source File: tfmri.py From dl-cs with MIT License | 6 votes |
def channels_to_complex(image, data_format='channels_last', name='channels2complex'): """Convert data from channels to complex.""" if len(image.shape) != 3 and len(image.shape) != 4: raise TypeError('Input data must be have 3 or 4 dimensions') axis_c = -1 if data_format == 'channels_last' else -3 shape_c = image.shape[axis_c].value if shape_c and (shape_c % 2 != 0): raise TypeError( 'Number of channels (%d) must be divisible by 2' % shape_c) if image.dtype is tf.complex64 or image.dtype is tf.complex128: raise TypeError('Input data cannot be complex') with tf.name_scope(name): image_real, image_imag = tf.split(image, 2, axis=axis_c) image_out = tf.complex(image_real, image_imag) return image_out
Example #11
Source File: cast_op_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def _testTypes(self, x, use_gpu=False): """Tests cast(x) to different tf.""" if use_gpu: type_list = [np.float32, np.float64, np.int64, np.complex64, np.complex128] else: type_list = [np.float32, np.float64, np.int32, np.int64, np.complex64, np.complex128] for from_type in type_list: for to_type in type_list: self._test(x.astype(from_type), to_type, use_gpu) self._test(x.astype(np.bool), np.float32, use_gpu) self._test(x.astype(np.uint8), np.float32, use_gpu) if not use_gpu: self._test(x.astype(np.bool), np.int32, use_gpu) self._test(x.astype(np.int32), np.int32, use_gpu)
Example #12
Source File: constant_op_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testDtype(self): with self.test_session(): d = tf.fill([2, 3], 12., name="fill") self.assertEqual(d.get_shape(), [2, 3]) # Test default type for both constant size and dynamic size z = tf.ones([2, 3]) self.assertEqual(z.dtype, tf.float32) self.assertEqual([2, 3], z.get_shape()) self.assertAllEqual(z.eval(), np.ones([2, 3])) z = tf.ones(tf.shape(d)) self.assertEqual(z.dtype, tf.float32) self.assertEqual([2, 3], z.get_shape()) self.assertAllEqual(z.eval(), np.ones([2, 3])) # Test explicit type control for dtype in (tf.float32, tf.float64, tf.int32, tf.uint8, tf.int16, tf.int8, tf.complex64, tf.complex128, tf.int64, tf.bool): z = tf.ones([2, 3], dtype=dtype) self.assertEqual(z.dtype, dtype) self.assertEqual([2, 3], z.get_shape()) self.assertAllEqual(z.eval(), np.ones([2, 3])) z = tf.ones(tf.shape(d), dtype=dtype) self.assertEqual(z.dtype, dtype) self.assertEqual([2, 3], z.get_shape()) self.assertAllEqual(z.eval(), np.ones([2, 3]))
Example #13
Source File: layers.py From neuron with GNU General Public License v3.0 | 6 votes |
def call(self, inputx): if not inputx.dtype in [tf.complex64, tf.complex128]: print('Warning: inputx is not complex. Converting.', file=sys.stderr) # if inputx is float, this will assume 0 imag channel inputx = tf.cast(inputx, tf.complex64) # get the right fft if self.ndims == 1: ifft = tf.ifft elif self.ndims == 2: ifft = tf.ifft2d else: ifft = tf.ifft3d perm_dims = [0, self.ndims + 1] + list(range(1, self.ndims + 1)) invert_perm_ndims = [0] + list(range(2, self.ndims + 2)) + [1] perm_inputx = K.permute_dimensions(inputx, perm_dims) # [batch_size, nb_features, *vol_size] ifft_inputx = ifft(perm_inputx) return K.permute_dimensions(ifft_inputx, invert_perm_ndims)
Example #14
Source File: layers.py From neuron with GNU General Public License v3.0 | 6 votes |
def call(self, inputx): if not inputx.dtype in [tf.complex64, tf.complex128]: print('Warning: inputx is not complex. Converting.', file=sys.stderr) # if inputx is float, this will assume 0 imag channel inputx = tf.cast(inputx, tf.complex64) # get the right fft if self.ndims == 1: fft = tf.fft elif self.ndims == 2: fft = tf.fft2d else: fft = tf.fft3d perm_dims = [0, self.ndims + 1] + list(range(1, self.ndims + 1)) invert_perm_ndims = [0] + list(range(2, self.ndims + 2)) + [1] perm_inputx = K.permute_dimensions(inputx, perm_dims) # [batch_size, nb_features, *vol_size] fft_inputx = fft(perm_inputx) return K.permute_dimensions(fft_inputx, invert_perm_ndims)
Example #15
Source File: fifo_queue_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testDtypes(self): with self.test_session() as sess: dtypes = [tf.float32, tf.float64, tf.int32, tf.uint8, tf.int16, tf.int8, tf.int64, tf.bool, tf.complex64, tf.complex128] shape = (32, 4, 128) q = tf.FIFOQueue(32, dtypes, [shape[1:]] * len(dtypes)) input_tuple = [] for dtype in dtypes: np_dtype = dtype.as_numpy_dtype np_array = np.random.randint(-10, 10, shape) if dtype == tf.bool: np_array = np_array > 0 elif dtype in (tf.complex64, tf.complex128): np_array = np.sqrt(np_array.astype(np_dtype)) else: np_array = np_array.astype(np_dtype) input_tuple.append(np_array) q.enqueue_many(input_tuple).run() output_tuple_t = q.dequeue_many(32) output_tuple = sess.run(output_tuple_t) for (input_elem, output_elem) in zip(input_tuple, output_tuple): self.assertAllEqual(input_elem, output_elem)
Example #16
Source File: segment_reduction_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testValues(self): dtypes = [tf.float32, tf.float64, tf.int64, tf.int32, tf.complex64, tf.complex128] # Each item is np_op1, np_op2, tf_op ops_list = [(np.add, None, tf.segment_sum), (self._mean_cum_op, self._mean_reduce_op, tf.segment_mean), (np.ndarray.__mul__, None, tf.segment_prod), (np.minimum, None, tf.segment_min), (np.maximum, None, tf.segment_max)] # A subset of ops has been enabled for complex numbers complex_ops_list = [(np.add, None, tf.segment_sum), (np.ndarray.__mul__, None, tf.segment_prod)] n = 10 shape = [n, 2] indices = [i // 3 for i in range(n)] for dtype in dtypes: if dtype in (tf.complex64, tf.complex128): curr_ops_list = complex_ops_list else: curr_ops_list = ops_list with self.test_session(use_gpu=False): tf_x, np_x = self._input(shape, dtype=dtype) for np_op1, np_op2, tf_op in curr_ops_list: np_ans = self._segmentReduce(indices, np_x, np_op1, np_op2) s = tf_op(data=tf_x, segment_ids=indices) tf_ans = s.eval() self._assertAllClose(indices, np_ans, tf_ans) # NOTE(mrry): The static shape inference that computes # `tf_ans.shape` can only infer that sizes from dimension 1 # onwards, because the size of dimension 0 is data-dependent # and may therefore vary dynamically. self.assertAllEqual(np_ans.shape[1:], tf_ans.shape[1:])
Example #17
Source File: constant_op_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testFillComplex128(self): np_ans = np.array([[0.15] * 3] * 2).astype(np.complex128) self._compare([2, 3], np_ans[0][0], np_ans, use_gpu=False)
Example #18
Source File: segment_reduction_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testEmptySecondDimension(self): dtypes = [np.float32, np.float64, np.int64, np.int32, np.complex64, np.complex128] with self.test_session(use_gpu=self.use_gpu): for dtype in dtypes: for itype in (np.int32, np.int64): data = np.zeros((2, 0), dtype=dtype) segment_ids = np.array([0, 1], dtype=itype) unsorted = tf.unsorted_segment_sum(data, segment_ids, 2) self.assertAllEqual(unsorted.eval(), np.zeros((2, 0), dtype=dtype))
Example #19
Source File: tensor_util_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testComplex128(self): t = tensor_util.make_tensor_proto((1+2j), dtype=tf.complex128) self.assertProtoEquals(""" dtype: DT_COMPLEX128 tensor_shape {} dcomplex_val: 1 dcomplex_val: 2 """, t) a = tensor_util.MakeNdarray(t) self.assertEquals(np.complex128, a.dtype) self.assertAllEqual(np.array(1 + 2j), a)
Example #20
Source File: constant_op_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testZerosLikeCPU(self): for dtype in [tf.float32, tf.float64, tf.int32, tf.uint8, tf.int16, tf.int8, tf.complex64, tf.complex128, tf.int64]: self._compareZeros(dtype, False)
Example #21
Source File: dtypes_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testStringConversion(self): self.assertIs(tf.float32, tf.as_dtype("float32")) self.assertIs(tf.float64, tf.as_dtype("float64")) self.assertIs(tf.int32, tf.as_dtype("int32")) self.assertIs(tf.uint8, tf.as_dtype("uint8")) self.assertIs(tf.uint16, tf.as_dtype("uint16")) self.assertIs(tf.int16, tf.as_dtype("int16")) self.assertIs(tf.int8, tf.as_dtype("int8")) self.assertIs(tf.string, tf.as_dtype("string")) self.assertIs(tf.complex64, tf.as_dtype("complex64")) self.assertIs(tf.complex128, tf.as_dtype("complex128")) self.assertIs(tf.int64, tf.as_dtype("int64")) self.assertIs(tf.bool, tf.as_dtype("bool")) self.assertIs(tf.qint8, tf.as_dtype("qint8")) self.assertIs(tf.quint8, tf.as_dtype("quint8")) self.assertIs(tf.qint32, tf.as_dtype("qint32")) self.assertIs(tf.bfloat16, tf.as_dtype("bfloat16")) self.assertIs(tf.float32_ref, tf.as_dtype("float32_ref")) self.assertIs(tf.float64_ref, tf.as_dtype("float64_ref")) self.assertIs(tf.int32_ref, tf.as_dtype("int32_ref")) self.assertIs(tf.uint8_ref, tf.as_dtype("uint8_ref")) self.assertIs(tf.int16_ref, tf.as_dtype("int16_ref")) self.assertIs(tf.int8_ref, tf.as_dtype("int8_ref")) self.assertIs(tf.string_ref, tf.as_dtype("string_ref")) self.assertIs(tf.complex64_ref, tf.as_dtype("complex64_ref")) self.assertIs(tf.complex128_ref, tf.as_dtype("complex128_ref")) self.assertIs(tf.int64_ref, tf.as_dtype("int64_ref")) self.assertIs(tf.bool_ref, tf.as_dtype("bool_ref")) self.assertIs(tf.qint8_ref, tf.as_dtype("qint8_ref")) self.assertIs(tf.quint8_ref, tf.as_dtype("quint8_ref")) self.assertIs(tf.qint32_ref, tf.as_dtype("qint32_ref")) self.assertIs(tf.bfloat16_ref, tf.as_dtype("bfloat16_ref")) with self.assertRaises(TypeError): tf.as_dtype("not_a_type")
Example #22
Source File: tensor_util_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testComplexWithImplicitRepeat(self): for dtype, np_dtype in [(tf.complex64, np.complex64), (tf.complex128, np.complex128)]: t = tensor_util.make_tensor_proto((1+1j), shape=[3, 4], dtype=dtype) a = tensor_util.MakeNdarray(t) self.assertAllClose(np.array([[(1+1j), (1+1j), (1+1j), (1+1j)], [(1+1j), (1+1j), (1+1j), (1+1j)], [(1+1j), (1+1j), (1+1j), (1+1j)]], dtype=np_dtype), a)
Example #23
Source File: dtypes_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testRealDtype(self): for dtype in [tf.float32, tf.float64, tf.bool, tf.uint8, tf.int8, tf.int16, tf.int32, tf.int64]: self.assertIs(dtype.real_dtype, dtype) self.assertIs(tf.complex64.real_dtype, tf.float32) self.assertIs(tf.complex128.real_dtype, tf.float64)
Example #24
Source File: cast_op_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testGradients(self): t = [tf.float32, tf.float64, tf.complex64, tf.complex128] for src_t in t: for dst_t in t: with self.test_session(): x = tf.constant(1.0, src_t) z = tf.identity(x) y = tf.cast(z, dst_t) err = tf.test.compute_gradient_error(x, [], y, []) self.assertLess(err, 1e-3)
Example #25
Source File: dtypes_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testIsInteger(self): self.assertEqual(tf.as_dtype("int8").is_integer, True) self.assertEqual(tf.as_dtype("int16").is_integer, True) self.assertEqual(tf.as_dtype("int32").is_integer, True) self.assertEqual(tf.as_dtype("int64").is_integer, True) self.assertEqual(tf.as_dtype("uint8").is_integer, True) self.assertEqual(tf.as_dtype("uint16").is_integer, True) self.assertEqual(tf.as_dtype("complex64").is_integer, False) self.assertEqual(tf.as_dtype("complex128").is_integer, False) self.assertEqual(tf.as_dtype("float").is_integer, False) self.assertEqual(tf.as_dtype("double").is_integer, False) self.assertEqual(tf.as_dtype("string").is_integer, False) self.assertEqual(tf.as_dtype("bool").is_integer, False) self.assertEqual(tf.as_dtype("bfloat16").is_integer, False)
Example #26
Source File: dtypes_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testIsFloating(self): self.assertEqual(tf.as_dtype("int8").is_floating, False) self.assertEqual(tf.as_dtype("int16").is_floating, False) self.assertEqual(tf.as_dtype("int32").is_floating, False) self.assertEqual(tf.as_dtype("int64").is_floating, False) self.assertEqual(tf.as_dtype("uint8").is_floating, False) self.assertEqual(tf.as_dtype("uint16").is_floating, False) self.assertEqual(tf.as_dtype("complex64").is_floating, False) self.assertEqual(tf.as_dtype("complex128").is_floating, False) self.assertEqual(tf.as_dtype("float32").is_floating, True) self.assertEqual(tf.as_dtype("float64").is_floating, True) self.assertEqual(tf.as_dtype("string").is_floating, False) self.assertEqual(tf.as_dtype("bool").is_floating, False) self.assertEqual(tf.as_dtype("bfloat16").is_integer, False)
Example #27
Source File: dtypes_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testIsComplex(self): self.assertEqual(tf.as_dtype("int8").is_complex, False) self.assertEqual(tf.as_dtype("int16").is_complex, False) self.assertEqual(tf.as_dtype("int32").is_complex, False) self.assertEqual(tf.as_dtype("int64").is_complex, False) self.assertEqual(tf.as_dtype("uint8").is_complex, False) self.assertEqual(tf.as_dtype("uint16").is_complex, False) self.assertEqual(tf.as_dtype("complex64").is_complex, True) self.assertEqual(tf.as_dtype("complex128").is_complex, True) self.assertEqual(tf.as_dtype("float32").is_complex, False) self.assertEqual(tf.as_dtype("float64").is_complex, False) self.assertEqual(tf.as_dtype("string").is_complex, False) self.assertEqual(tf.as_dtype("bool").is_complex, False) self.assertEqual(tf.as_dtype("bfloat16").is_integer, False)
Example #28
Source File: odes_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def test_odeint_all_dtypes(self): func = lambda y, t: y t = np.linspace(0.0, 1.0, 11) for y0_dtype in [tf.float32, tf.float64, tf.complex64, tf.complex128]: for t_dtype in [tf.float32, tf.float64]: y0 = tf.cast(1.0, y0_dtype) y_solved = tf.contrib.integrate.odeint(func, y0, tf.cast(t, t_dtype)) with self.test_session() as sess: y_solved = sess.run(y_solved) expected = np.asarray(np.exp(t)) self.assertAllClose(y_solved, expected, rtol=1e-5) self.assertEqual(tf.as_dtype(y_solved.dtype), y0_dtype)
Example #29
Source File: tfmri.py From dl-cs with MIT License | 5 votes |
def complex_to_channels(image, data_format='channels_last', name='complex2channels'): """Convert data from complex to channels.""" if len(image.shape) != 3 and len(image.shape) != 4: raise TypeError('Input data must be have 3 or 4 dimensions') axis_c = -1 if data_format == 'channels_last' else -3 if image.dtype is not tf.complex64 and image.dtype is not tf.complex128: raise TypeError('Input data must be complex') with tf.name_scope(name): image_out = tf.concat((tf.real(image), tf.imag(image)), axis_c) return image_out
Example #30
Source File: benchmark_online_wpe.py From nara_wpe with MIT License | 5 votes |
def config_iterator(): return product( range(1, 11), [5, 10], # K [2, 4, 6], # num_mics # range(2, 11) [512], # frame_size # 1024 [tf.complex64], # dtype # , tf.complex128 ['/cpu:0'] # device # '/gpu:0' )