Python tensorflow.DataType() Examples

The following are 12 code examples of tensorflow.DataType(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module tensorflow , or try the search function .
Example #1
Source File: graph_builder.py    From DOTA_models with Apache License 2.0 4 votes vote down vote up
def _AddParam(self,
                shape,
                dtype,
                name,
                initializer=None,
                return_average=False):
    """Add a model parameter w.r.t. we expect to compute gradients.

    _AddParam creates both regular parameters (usually for training) and
    averaged nodes (usually for inference). It returns one or the other based
    on the 'return_average' arg.

    Args:
      shape: int list, tensor shape of the parameter to create
      dtype: tf.DataType, data type of the parameter
      name: string, name of the parameter in the TF graph
      initializer: optional initializer for the paramter
      return_average: if False, return parameter otherwise return moving average

    Returns:
      parameter or averaged parameter
    """
    if name not in self.params:
      step = tf.cast(self.GetStep(), tf.float32)
      # Put all parameters and their initializing ops in their own scope
      # irrespective of the current scope (training or eval).
      with tf.name_scope(self._param_scope):
        self.params[name] = tf.get_variable(name, shape, dtype, initializer)
        param = self.params[name]
        if initializer is not None:
          self.inits[name] = state_ops.init_variable(param, initializer)
        if self._averaging_decay == 1:
          logging.info('Using vanilla averaging of parameters.')
          ema = tf.train.ExponentialMovingAverage(decay=(step / (step + 1.0)),
                                                  num_updates=None)
        else:
          ema = tf.train.ExponentialMovingAverage(decay=self._averaging_decay,
                                                  num_updates=step)
        self._averaging[name + '_avg_update'] = ema.apply([param])
        self.variables[name + '_avg_var'] = ema.average(param)
        self.inits[name + '_avg_init'] = state_ops.init_variable(
            ema.average(param), tf.zeros_initializer())
    return (self.variables[name + '_avg_var'] if return_average else
            self.params[name]) 
Example #2
Source File: graph_builder.py    From yolo_v2 with Apache License 2.0 4 votes vote down vote up
def _AddParam(self,
                shape,
                dtype,
                name,
                initializer=None,
                return_average=False):
    """Add a model parameter w.r.t. we expect to compute gradients.

    _AddParam creates both regular parameters (usually for training) and
    averaged nodes (usually for inference). It returns one or the other based
    on the 'return_average' arg.

    Args:
      shape: int list, tensor shape of the parameter to create
      dtype: tf.DataType, data type of the parameter
      name: string, name of the parameter in the TF graph
      initializer: optional initializer for the paramter
      return_average: if False, return parameter otherwise return moving average

    Returns:
      parameter or averaged parameter
    """
    if name not in self.params:
      step = tf.cast(self.GetStep(), tf.float32)
      # Put all parameters and their initializing ops in their own scope
      # irrespective of the current scope (training or eval).
      with tf.name_scope(self._param_scope):
        self.params[name] = tf.get_variable(name, shape, dtype, initializer)
        param = self.params[name]
        if initializer is not None:
          self.inits[name] = state_ops.init_variable(param, initializer)
        if self._averaging_decay == 1:
          logging.info('Using vanilla averaging of parameters.')
          ema = tf.train.ExponentialMovingAverage(decay=(step / (step + 1.0)),
                                                  num_updates=None)
        else:
          ema = tf.train.ExponentialMovingAverage(decay=self._averaging_decay,
                                                  num_updates=step)
        self._averaging[name + '_avg_update'] = ema.apply([param])
        self.variables[name + '_avg_var'] = ema.average(param)
        self.inits[name + '_avg_init'] = state_ops.init_variable(
            ema.average(param), tf.zeros_initializer())
    return (self.variables[name + '_avg_var'] if return_average else
            self.params[name]) 
Example #3
Source File: graph_builder.py    From Gun-Detector with Apache License 2.0 4 votes vote down vote up
def _AddParam(self,
                shape,
                dtype,
                name,
                initializer=None,
                return_average=False):
    """Add a model parameter w.r.t. we expect to compute gradients.

    _AddParam creates both regular parameters (usually for training) and
    averaged nodes (usually for inference). It returns one or the other based
    on the 'return_average' arg.

    Args:
      shape: int list, tensor shape of the parameter to create
      dtype: tf.DataType, data type of the parameter
      name: string, name of the parameter in the TF graph
      initializer: optional initializer for the paramter
      return_average: if False, return parameter otherwise return moving average

    Returns:
      parameter or averaged parameter
    """
    if name not in self.params:
      step = tf.cast(self.GetStep(), tf.float32)
      # Put all parameters and their initializing ops in their own scope
      # irrespective of the current scope (training or eval).
      with tf.name_scope(self._param_scope):
        self.params[name] = tf.get_variable(name, shape, dtype, initializer)
        param = self.params[name]
        if initializer is not None:
          self.inits[name] = state_ops.init_variable(param, initializer)
        if self._averaging_decay == 1:
          logging.info('Using vanilla averaging of parameters.')
          ema = tf.train.ExponentialMovingAverage(decay=(step / (step + 1.0)),
                                                  num_updates=None)
        else:
          ema = tf.train.ExponentialMovingAverage(decay=self._averaging_decay,
                                                  num_updates=step)
        self._averaging[name + '_avg_update'] = ema.apply([param])
        self.variables[name + '_avg_var'] = ema.average(param)
        self.inits[name + '_avg_init'] = state_ops.init_variable(
            ema.average(param), tf.zeros_initializer())
    return (self.variables[name + '_avg_var'] if return_average else
            self.params[name]) 
Example #4
Source File: graph_builder.py    From Action_Recognition_Zoo with MIT License 4 votes vote down vote up
def _AddParam(self,
                shape,
                dtype,
                name,
                initializer=None,
                return_average=False):
    """Add a model parameter w.r.t. we expect to compute gradients.

    _AddParam creates both regular parameters (usually for training) and
    averaged nodes (usually for inference). It returns one or the other based
    on the 'return_average' arg.

    Args:
      shape: int list, tensor shape of the parameter to create
      dtype: tf.DataType, data type of the parameter
      name: string, name of the parameter in the TF graph
      initializer: optional initializer for the paramter
      return_average: if False, return parameter otherwise return moving average

    Returns:
      parameter or averaged parameter
    """
    if name not in self.params:
      step = tf.cast(self.GetStep(), tf.float32)
      # Put all parameters and their initializing ops in their own scope
      # irrespective of the current scope (training or eval).
      with tf.name_scope(self._param_scope):
        self.params[name] = tf.get_variable(name, shape, dtype, initializer)
        param = self.params[name]
        if initializer is not None:
          self.inits[name] = state_ops.init_variable(param, initializer)
        if self._averaging_decay == 1:
          logging.info('Using vanilla averaging of parameters.')
          ema = tf.train.ExponentialMovingAverage(decay=(step / (step + 1.0)),
                                                  num_updates=None)
        else:
          ema = tf.train.ExponentialMovingAverage(decay=self._averaging_decay,
                                                  num_updates=step)
        self._averaging[name + '_avg_update'] = ema.apply([param])
        self.variables[name + '_avg_var'] = ema.average(param)
        self.inits[name + '_avg_init'] = state_ops.init_variable(
            ema.average(param), tf.zeros_initializer)
    return (self.variables[name + '_avg_var'] if return_average else
            self.params[name]) 
Example #5
Source File: graph_builder.py    From ECO-pytorch with BSD 2-Clause "Simplified" License 4 votes vote down vote up
def _AddParam(self,
                shape,
                dtype,
                name,
                initializer=None,
                return_average=False):
    """Add a model parameter w.r.t. we expect to compute gradients.

    _AddParam creates both regular parameters (usually for training) and
    averaged nodes (usually for inference). It returns one or the other based
    on the 'return_average' arg.

    Args:
      shape: int list, tensor shape of the parameter to create
      dtype: tf.DataType, data type of the parameter
      name: string, name of the parameter in the TF graph
      initializer: optional initializer for the paramter
      return_average: if False, return parameter otherwise return moving average

    Returns:
      parameter or averaged parameter
    """
    if name not in self.params:
      step = tf.cast(self.GetStep(), tf.float32)
      # Put all parameters and their initializing ops in their own scope
      # irrespective of the current scope (training or eval).
      with tf.name_scope(self._param_scope):
        self.params[name] = tf.get_variable(name, shape, dtype, initializer)
        param = self.params[name]
        if initializer is not None:
          self.inits[name] = state_ops.init_variable(param, initializer)
        if self._averaging_decay == 1:
          logging.info('Using vanilla averaging of parameters.')
          ema = tf.train.ExponentialMovingAverage(decay=(step / (step + 1.0)),
                                                  num_updates=None)
        else:
          ema = tf.train.ExponentialMovingAverage(decay=self._averaging_decay,
                                                  num_updates=step)
        self._averaging[name + '_avg_update'] = ema.apply([param])
        self.variables[name + '_avg_var'] = ema.average(param)
        self.inits[name + '_avg_init'] = state_ops.init_variable(
            ema.average(param), tf.zeros_initializer)
    return (self.variables[name + '_avg_var'] if return_average else
            self.params[name]) 
Example #6
Source File: graph_builder.py    From hands-detection with MIT License 4 votes vote down vote up
def _AddParam(self,
                shape,
                dtype,
                name,
                initializer=None,
                return_average=False):
    """Add a model parameter w.r.t. we expect to compute gradients.

    _AddParam creates both regular parameters (usually for training) and
    averaged nodes (usually for inference). It returns one or the other based
    on the 'return_average' arg.

    Args:
      shape: int list, tensor shape of the parameter to create
      dtype: tf.DataType, data type of the parameter
      name: string, name of the parameter in the TF graph
      initializer: optional initializer for the paramter
      return_average: if False, return parameter otherwise return moving average

    Returns:
      parameter or averaged parameter
    """
    if name not in self.params:
      step = tf.cast(self.GetStep(), tf.float32)
      # Put all parameters and their initializing ops in their own scope
      # irrespective of the current scope (training or eval).
      with tf.name_scope(self._param_scope):
        self.params[name] = tf.get_variable(name, shape, dtype, initializer)
        param = self.params[name]
        if initializer is not None:
          self.inits[name] = state_ops.init_variable(param, initializer)
        if self._averaging_decay == 1:
          logging.info('Using vanilla averaging of parameters.')
          ema = tf.train.ExponentialMovingAverage(decay=(step / (step + 1.0)),
                                                  num_updates=None)
        else:
          ema = tf.train.ExponentialMovingAverage(decay=self._averaging_decay,
                                                  num_updates=step)
        self._averaging[name + '_avg_update'] = ema.apply([param])
        self.variables[name + '_avg_var'] = ema.average(param)
        self.inits[name + '_avg_init'] = state_ops.init_variable(
            ema.average(param), tf.zeros_initializer())
    return (self.variables[name + '_avg_var'] if return_average else
            self.params[name]) 
Example #7
Source File: graph_builder.py    From object_detection_kitti with Apache License 2.0 4 votes vote down vote up
def _AddParam(self,
                shape,
                dtype,
                name,
                initializer=None,
                return_average=False):
    """Add a model parameter w.r.t. we expect to compute gradients.

    _AddParam creates both regular parameters (usually for training) and
    averaged nodes (usually for inference). It returns one or the other based
    on the 'return_average' arg.

    Args:
      shape: int list, tensor shape of the parameter to create
      dtype: tf.DataType, data type of the parameter
      name: string, name of the parameter in the TF graph
      initializer: optional initializer for the paramter
      return_average: if False, return parameter otherwise return moving average

    Returns:
      parameter or averaged parameter
    """
    if name not in self.params:
      step = tf.cast(self.GetStep(), tf.float32)
      # Put all parameters and their initializing ops in their own scope
      # irrespective of the current scope (training or eval).
      with tf.name_scope(self._param_scope):
        self.params[name] = tf.get_variable(name, shape, dtype, initializer)
        param = self.params[name]
        if initializer is not None:
          self.inits[name] = state_ops.init_variable(param, initializer)
        if self._averaging_decay == 1:
          logging.info('Using vanilla averaging of parameters.')
          ema = tf.train.ExponentialMovingAverage(decay=(step / (step + 1.0)),
                                                  num_updates=None)
        else:
          ema = tf.train.ExponentialMovingAverage(decay=self._averaging_decay,
                                                  num_updates=step)
        self._averaging[name + '_avg_update'] = ema.apply([param])
        self.variables[name + '_avg_var'] = ema.average(param)
        self.inits[name + '_avg_init'] = state_ops.init_variable(
            ema.average(param), tf.zeros_initializer())
    return (self.variables[name + '_avg_var'] if return_average else
            self.params[name]) 
Example #8
Source File: graph_builder.py    From object_detection_with_tensorflow with MIT License 4 votes vote down vote up
def _AddParam(self,
                shape,
                dtype,
                name,
                initializer=None,
                return_average=False):
    """Add a model parameter w.r.t. we expect to compute gradients.

    _AddParam creates both regular parameters (usually for training) and
    averaged nodes (usually for inference). It returns one or the other based
    on the 'return_average' arg.

    Args:
      shape: int list, tensor shape of the parameter to create
      dtype: tf.DataType, data type of the parameter
      name: string, name of the parameter in the TF graph
      initializer: optional initializer for the paramter
      return_average: if False, return parameter otherwise return moving average

    Returns:
      parameter or averaged parameter
    """
    if name not in self.params:
      step = tf.cast(self.GetStep(), tf.float32)
      # Put all parameters and their initializing ops in their own scope
      # irrespective of the current scope (training or eval).
      with tf.name_scope(self._param_scope):
        self.params[name] = tf.get_variable(name, shape, dtype, initializer)
        param = self.params[name]
        if initializer is not None:
          self.inits[name] = state_ops.init_variable(param, initializer)
        if self._averaging_decay == 1:
          logging.info('Using vanilla averaging of parameters.')
          ema = tf.train.ExponentialMovingAverage(decay=(step / (step + 1.0)),
                                                  num_updates=None)
        else:
          ema = tf.train.ExponentialMovingAverage(decay=self._averaging_decay,
                                                  num_updates=step)
        self._averaging[name + '_avg_update'] = ema.apply([param])
        self.variables[name + '_avg_var'] = ema.average(param)
        self.inits[name + '_avg_init'] = state_ops.init_variable(
            ema.average(param), tf.zeros_initializer())
    return (self.variables[name + '_avg_var'] if return_average else
            self.params[name]) 
Example #9
Source File: graph_builder.py    From AI_Reader with Apache License 2.0 4 votes vote down vote up
def _AddParam(self,
                shape,
                dtype,
                name,
                initializer=None,
                return_average=False):
    """Add a model parameter w.r.t. we expect to compute gradients.

    _AddParam creates both regular parameters (usually for training) and
    averaged nodes (usually for inference). It returns one or the other based
    on the 'return_average' arg.

    Args:
      shape: int list, tensor shape of the parameter to create
      dtype: tf.DataType, data type of the parameter
      name: string, name of the parameter in the TF graph
      initializer: optional initializer for the paramter
      return_average: if False, return parameter otherwise return moving average

    Returns:
      parameter or averaged parameter
    """
    if name not in self.params:
      step = tf.cast(self.GetStep(), tf.float32)
      # Put all parameters and their initializing ops in their own scope
      # irrespective of the current scope (training or eval).
      with tf.name_scope(self._param_scope):
        self.params[name] = tf.get_variable(name, shape, dtype, initializer)
        param = self.params[name]
        if initializer is not None:
          self.inits[name] = state_ops.init_variable(param, initializer)
        if self._averaging_decay == 1:
          logging.info('Using vanilla averaging of parameters.')
          ema = tf.train.ExponentialMovingAverage(decay=(step / (step + 1.0)),
                                                  num_updates=None)
        else:
          ema = tf.train.ExponentialMovingAverage(decay=self._averaging_decay,
                                                  num_updates=step)
        self._averaging[name + '_avg_update'] = ema.apply([param])
        self.variables[name + '_avg_var'] = ema.average(param)
        self.inits[name + '_avg_init'] = state_ops.init_variable(
            ema.average(param), tf.zeros_initializer)
    return (self.variables[name + '_avg_var'] if return_average else
            self.params[name]) 
Example #10
Source File: graph_builder.py    From HumanRecognition with MIT License 4 votes vote down vote up
def _AddParam(self,
                shape,
                dtype,
                name,
                initializer=None,
                return_average=False):
    """Add a model parameter w.r.t. we expect to compute gradients.

    _AddParam creates both regular parameters (usually for training) and
    averaged nodes (usually for inference). It returns one or the other based
    on the 'return_average' arg.

    Args:
      shape: int list, tensor shape of the parameter to create
      dtype: tf.DataType, data type of the parameter
      name: string, name of the parameter in the TF graph
      initializer: optional initializer for the paramter
      return_average: if False, return parameter otherwise return moving average

    Returns:
      parameter or averaged parameter
    """
    if name not in self.params:
      step = tf.cast(self.GetStep(), tf.float32)
      # Put all parameters and their initializing ops in their own scope
      # irrespective of the current scope (training or eval).
      with tf.name_scope(self._param_scope):
        self.params[name] = tf.get_variable(name, shape, dtype, initializer)
        param = self.params[name]
        if initializer is not None:
          self.inits[name] = state_ops.init_variable(param, initializer)
        if self._averaging_decay == 1:
          logging.info('Using vanilla averaging of parameters.')
          ema = tf.train.ExponentialMovingAverage(decay=(step / (step + 1.0)),
                                                  num_updates=None)
        else:
          ema = tf.train.ExponentialMovingAverage(decay=self._averaging_decay,
                                                  num_updates=step)
        self._averaging[name + '_avg_update'] = ema.apply([param])
        self.variables[name + '_avg_var'] = ema.average(param)
        self.inits[name + '_avg_init'] = state_ops.init_variable(
            ema.average(param), tf.zeros_initializer())
    return (self.variables[name + '_avg_var'] if return_average else
            self.params[name]) 
Example #11
Source File: graph_builder.py    From g-tensorflow-models with Apache License 2.0 4 votes vote down vote up
def _AddParam(self,
                shape,
                dtype,
                name,
                initializer=None,
                return_average=False):
    """Add a model parameter w.r.t. we expect to compute gradients.

    _AddParam creates both regular parameters (usually for training) and
    averaged nodes (usually for inference). It returns one or the other based
    on the 'return_average' arg.

    Args:
      shape: int list, tensor shape of the parameter to create
      dtype: tf.DataType, data type of the parameter
      name: string, name of the parameter in the TF graph
      initializer: optional initializer for the paramter
      return_average: if False, return parameter otherwise return moving average

    Returns:
      parameter or averaged parameter
    """
    if name not in self.params:
      step = tf.cast(self.GetStep(), tf.float32)
      # Put all parameters and their initializing ops in their own scope
      # irrespective of the current scope (training or eval).
      with tf.name_scope(self._param_scope):
        self.params[name] = tf.get_variable(name, shape, dtype, initializer)
        param = self.params[name]
        if initializer is not None:
          self.inits[name] = state_ops.init_variable(param, initializer)
        if self._averaging_decay == 1:
          logging.info('Using vanilla averaging of parameters.')
          ema = tf.train.ExponentialMovingAverage(decay=(step / (step + 1.0)),
                                                  num_updates=None)
        else:
          ema = tf.train.ExponentialMovingAverage(decay=self._averaging_decay,
                                                  num_updates=step)
        self._averaging[name + '_avg_update'] = ema.apply([param])
        self.variables[name + '_avg_var'] = ema.average(param)
        self.inits[name + '_avg_init'] = state_ops.init_variable(
            ema.average(param), tf.zeros_initializer())
    return (self.variables[name + '_avg_var'] if return_average else
            self.params[name]) 
Example #12
Source File: graph_builder.py    From multilabel-image-classification-tensorflow with MIT License 4 votes vote down vote up
def _AddParam(self,
                shape,
                dtype,
                name,
                initializer=None,
                return_average=False):
    """Add a model parameter w.r.t. we expect to compute gradients.

    _AddParam creates both regular parameters (usually for training) and
    averaged nodes (usually for inference). It returns one or the other based
    on the 'return_average' arg.

    Args:
      shape: int list, tensor shape of the parameter to create
      dtype: tf.DataType, data type of the parameter
      name: string, name of the parameter in the TF graph
      initializer: optional initializer for the paramter
      return_average: if False, return parameter otherwise return moving average

    Returns:
      parameter or averaged parameter
    """
    if name not in self.params:
      step = tf.cast(self.GetStep(), tf.float32)
      # Put all parameters and their initializing ops in their own scope
      # irrespective of the current scope (training or eval).
      with tf.name_scope(self._param_scope):
        self.params[name] = tf.get_variable(name, shape, dtype, initializer)
        param = self.params[name]
        if initializer is not None:
          self.inits[name] = state_ops.init_variable(param, initializer)
        if self._averaging_decay == 1:
          logging.info('Using vanilla averaging of parameters.')
          ema = tf.train.ExponentialMovingAverage(decay=(step / (step + 1.0)),
                                                  num_updates=None)
        else:
          ema = tf.train.ExponentialMovingAverage(decay=self._averaging_decay,
                                                  num_updates=step)
        self._averaging[name + '_avg_update'] = ema.apply([param])
        self.variables[name + '_avg_var'] = ema.average(param)
        self.inits[name + '_avg_init'] = state_ops.init_variable(
            ema.average(param), tf.zeros_initializer())
    return (self.variables[name + '_avg_var'] if return_average else
            self.params[name])