Python tensorflow.bfloat16() Examples
The following are 30
code examples of tensorflow.bfloat16().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: tf_preprocessing.py From gen-efficientnet-pytorch with Apache License 2.0 | 6 votes |
def preprocess_for_train(image_bytes, use_bfloat16, image_size=IMAGE_SIZE, interpolation='bicubic'): """Preprocesses the given image for evaluation. Args: image_bytes: `Tensor` representing an image binary of arbitrary size. use_bfloat16: `bool` for whether to use bfloat16. image_size: image size. interpolation: image interpolation method Returns: A preprocessed image `Tensor`. """ resize_method = tf.image.ResizeMethod.BICUBIC if interpolation == 'bicubic' else tf.image.ResizeMethod.BILINEAR image = _decode_and_random_crop(image_bytes, image_size, resize_method) image = _flip(image) image = tf.reshape(image, [image_size, image_size, 3]) image = tf.image.convert_image_dtype( image, dtype=tf.bfloat16 if use_bfloat16 else tf.float32) return image
Example #2
Source File: transformer.py From models with Apache License 2.0 | 6 votes |
def __call__(self, x, *args, **kwargs): # Preprocessing: apply layer normalization #casting back to float32 x = tf.cast(x, tf.bfloat16) y = self.layer_norm(x) #y = tf.cast(y, tf.float32) # Get layer output y = self.layer(y, *args, **kwargs) # Postprocessing: apply dropout and residual connection if self.train: mlperf_log.transformer_print( key=mlperf_log.MODEL_HP_LAYER_POSTPROCESS_DROPOUT, value=self.postprocess_dropout) y = tf.nn.dropout(y, 1 - (1 - self.postprocess_dropout)) return x + y
Example #3
Source File: t2t_model.py From BERT with Apache License 2.0 | 6 votes |
def _custom_getter(self): if self.hparams.weight_dtype == "bfloat16": if self.hparams.optimizer != "Adafactor": raise NotImplementedError( "weight_dtype=bfloat16 only implemented with Adafactor optimizer") activation_dtype = tf.float32 if self.hparams.activation_dtype == "bfloat16": activation_dtype = tf.bfloat16 return quantization.EighthPowerEncoding().custom_getter( activation_dtype=activation_dtype) elif self.hparams.activation_dtype == "bfloat16": return quantization.bfloat16_activations_var_getter elif mixed_precision_is_enabled(hparams=self.hparams): return quantization.float16_activations_var_getter else: return None
Example #4
Source File: embedding_layer.py From models with Apache License 2.0 | 6 votes |
def linear(self, x): """Computes logits by running x through a linear layer. Args: x: A float32 tensor with shape [batch_size, length, hidden_size] Returns: float32 tensor with shape [batch_size, length, vocab_size]. """ #with tf.compat.v1.tpu.bfloat16_scope(): with tf.compat.v1.name_scope("presoftmax_linear"): #x = tf.cast(x, tf.bfloat16) batch_size = tf.shape(input=x)[0] length = tf.shape(input=x)[1] x = tf.reshape(x, [-1, self.hidden_size]) logits = tf.matmul(x, self.shared_weights, transpose_b=True) #logits = tf.cast(logits, tf.float32) return tf.reshape(logits, [batch_size, length, self.vocab_size])
Example #5
Source File: quantization.py From BERT with Apache License 2.0 | 6 votes |
def bfloat16_activations_var_getter(getter, *args, **kwargs): """A custom getter function for float32 parameters and bfloat16 activations. Args: getter: custom getter *args: arguments **kwargs: keyword arguments Returns: variables with the correct dtype. Raises: KeyError: if "dtype" is not provided as a kwarg. """ requested_dtype = kwargs["dtype"] if requested_dtype == tf.bfloat16: kwargs["dtype"] = tf.float32 var = getter(*args, **kwargs) # This if statement is needed to guard the cast, because batch norm # assigns directly to the return value of this custom getter. The cast # makes the return value not a variable so it cannot be assigned. Batch # norm variables are always in fp32 so this if statement is never # triggered for them. if var.dtype.base_dtype != requested_dtype: var = tf.cast(var, requested_dtype) return var
Example #6
Source File: resnet_preprocessing.py From training_results_v0.5 with Apache License 2.0 | 6 votes |
def preprocess_for_train(image_bytes, use_bfloat16, image_size=IMAGE_SIZE): """Preprocesses the given image for evaluation. Args: image_bytes: `Tensor` representing an image binary of arbitrary size. use_bfloat16: `bool` for whether to use bfloat16. image_size: image size. Returns: A preprocessed image `Tensor`. """ image = _decode_and_random_crop(image_bytes, image_size) image = _flip(image) image = tf.reshape(image, [image_size, image_size, 3]) image = tf.image.convert_image_dtype( image, dtype=tf.bfloat16 if use_bfloat16 else tf.float32) return image
Example #7
Source File: resnet_preprocessing.py From training_results_v0.5 with Apache License 2.0 | 6 votes |
def preprocess_for_eval(image_bytes, use_bfloat16, image_size=IMAGE_SIZE): """Preprocesses the given image for evaluation. Args: image_bytes: `Tensor` representing an image binary of arbitrary size. use_bfloat16: `bool` for whether to use bfloat16. image_size: image size. Returns: A preprocessed image `Tensor`. """ image = _decode_and_center_crop(image_bytes, image_size) image = tf.reshape(image, [image_size, image_size, 3]) image = tf.image.convert_image_dtype( image, dtype=tf.bfloat16 if use_bfloat16 else tf.float32) return image
Example #8
Source File: quantization.py From BERT with Apache License 2.0 | 6 votes |
def _to_bfloat16_unbiased(x, noise): """Convert a float32 to a bfloat16 using randomized roundoff. Args: x: A float32 Tensor. noise: a float32 Tensor with values in [0, 1), broadcastable to tf.shape(x) Returns: A float32 Tensor. """ x_sign = tf.sign(x) # Make sure x is positive. If it is zero, the two candidates are identical. x = x * x_sign + 1e-30 cand1 = tf.to_bfloat16(x) cand1_f = tf.to_float(cand1) # This relies on the fact that for a positive bfloat16 b, # b * 1.005 gives you the next higher bfloat16 and b*0.995 gives you the # next lower one. Both 1.005 and 0.995 are ballpark estimation. cand2 = tf.to_bfloat16( tf.where(tf.greater(x, cand1_f), cand1_f * 1.005, cand1_f * 0.995)) ret = _randomized_roundoff_to_bfloat16(x, noise, cand1, cand2) return ret * tf.to_bfloat16(x_sign)
Example #9
Source File: trainer.py From cloudml-samples with Apache License 2.0 | 6 votes |
def dataset_parser(value): keys_to_features = { 'image/encoded': tf.FixedLenFeature((), tf.string, ''), 'image/format': tf.FixedLenFeature((), tf.string, 'jpeg'), 'image/class/label': tf.FixedLenFeature([], tf.int64, -1) } parsed = tf.parse_single_example(value, keys_to_features) image_bytes = tf.reshape(parsed['image/encoded'], shape=[]) # Preprocess the images. image = tf.image.decode_jpeg(image_bytes) image = tf.image.random_flip_left_right(image) image = tf.image.resize_images(image, [IMAGE_SIZE, IMAGE_SIZE]) image = tf.image.convert_image_dtype( image, dtype=tf.bfloat16) # Subtract one so that labels are in [0, 1000). label = tf.cast( tf.reshape(parsed['image/class/label'], shape=[]), dtype=tf.int32) - 1 return image, label
Example #10
Source File: quantization.py From BERT with Apache License 2.0 | 6 votes |
def custom_getter(self, activation_dtype=tf.bfloat16): """A custom getter that uses the encoding for bfloat16 and float32 vars. When a bfloat16 or float32 variable is requsted, an encoded float16 varaible is created, which is then decoded and cast to a bfloat16 activation. Args: activation_dtype: a dtype to which to convert the decoded value. Returns: a function. """ def getter_fn(getter, *args, **kwargs): requested_dtype = kwargs["dtype"] if requested_dtype in (tf.bfloat16, tf.float32): kwargs["dtype"] = tf.bfloat16 kwargs["initializer"] = _EncodingInitializer( kwargs["initializer"], self) ret = self._decode_with_identity_gradient(getter(*args, **kwargs)) return tf.cast(ret, activation_dtype) return getter(*args, **kwargs) return getter_fn
Example #11
Source File: quantization.py From fine-lm with MIT License | 6 votes |
def custom_getter(self, activation_dtype=tf.bfloat16): """A custom getter that uses the encoding for bfloat16 and float32 vars. When a bfloat16 or float32 variable is requsted, an encoded float16 varaible is created, which is then decoded and cast to a bfloat16 activation. Args: activation_dtype: a dtype to which to convert the decoded value. Returns: a function. """ def getter_fn(getter, *args, **kwargs): requested_dtype = kwargs["dtype"] if requested_dtype in (tf.bfloat16, tf.float32): kwargs["dtype"] = tf.bfloat16 kwargs["initializer"] = _EncodingInitializer( kwargs["initializer"], self) ret = self._decode_with_identity_gradient(getter(*args, **kwargs)) return tf.cast(ret, activation_dtype) return getter(*args, **kwargs) return getter_fn
Example #12
Source File: quantization.py From training_results_v0.5 with Apache License 2.0 | 6 votes |
def bfloat16_activations_var_getter(getter, *args, **kwargs): """A custom getter function for float32 parameters and bfloat16 activations. Args: getter: custom getter *args: arguments **kwargs: keyword arguments Returns: variables with the correct dtype. Raises: KeyError: if "dtype" is not provided as a kwarg. """ requested_dtype = kwargs["dtype"] if requested_dtype == tf.bfloat16: kwargs["dtype"] = tf.float32 var = getter(*args, **kwargs) # This if statement is needed to guard the cast, because batch norm # assigns directly to the return value of this custom getter. The cast # makes the return value not a variable so it cannot be assigned. Batch # norm variables are always in fp32 so this if statement is never # triggered for them. if var.dtype.base_dtype != requested_dtype: var = tf.cast(var, requested_dtype) return var
Example #13
Source File: quantization.py From training_results_v0.5 with Apache License 2.0 | 6 votes |
def _randomized_roundoff_to_bfloat16(x, noise, cand1, cand2): """Round-off x to cand1 or to cand2 in an unbiased way. Cand1 and cand2 are the same shape as x. For every element of x, the corresponding elements of cand1 and cand2 should be the two closest bfloat16 values to x. Order does not matter. cand1 and cand2 must differ from each other. Args: x: A float32 Tensor. noise: A Tensor broadcastable to the shape of x containing random uniform values in [0.0, 1.0]. cand1: A bfloat16 Tensor the same shape as x. cand2: A bfloat16 Tensor the same shape as x. Returns: A bfloat16 Tensor. """ cand1_f = tf.to_float(cand1) cand2_f = tf.to_float(cand2) step_size = cand2_f - cand1_f fpart = (x - cand1_f) / step_size ret = tf.where(tf.greater(fpart, noise), cand2, cand1) return ret
Example #14
Source File: quantization.py From training_results_v0.5 with Apache License 2.0 | 6 votes |
def _to_bfloat16_unbiased(x, noise): """Convert a float32 to a bfloat16 using randomized roundoff. Args: x: A float32 Tensor. noise: a float32 Tensor with values in [0, 1), broadcastable to tf.shape(x) Returns: A float32 Tensor. """ x_sign = tf.sign(x) # Make sure x is positive. If it is zero, the two candidates are identical. x = x * x_sign + 1e-30 cand1 = tf.to_bfloat16(x) cand1_f = tf.to_float(cand1) # This relies on the fact that for a positive bfloat16 b, # b * 1.005 gives you the next higher bfloat16 and b*0.995 gives you the # next lower one. Both 1.005 and 0.995 are ballpark estimation. cand2 = tf.to_bfloat16( tf.where(tf.greater(x, cand1_f), cand1_f * 1.005, cand1_f * 0.995)) ret = _randomized_roundoff_to_bfloat16(x, noise, cand1, cand2) return ret * tf.to_bfloat16(x_sign)
Example #15
Source File: quantization.py From fine-lm with MIT License | 6 votes |
def _to_bfloat16_unbiased(x, noise): """Convert a float32 to a bfloat16 using randomized roundoff. Args: x: A float32 Tensor. noise: a float32 Tensor with values in [0, 1), broadcastable to tf.shape(x) Returns: A float32 Tensor. """ x_sign = tf.sign(x) # Make sure x is positive. If it is zero, the two candidates are identical. x = x * x_sign + 1e-30 cand1 = tf.to_bfloat16(x) cand1_f = tf.to_float(cand1) # This relies on the fact that for a positive bfloat16 b, # b * 1.005 gives you the next higher bfloat16 and b*0.995 gives you the # next lower one. Both 1.005 and 0.995 are ballpark estimation. cand2 = tf.to_bfloat16( tf.where(tf.greater(x, cand1_f), cand1_f * 1.005, cand1_f * 0.995)) ret = _randomized_roundoff_to_bfloat16(x, noise, cand1, cand2) return ret * tf.to_bfloat16(x_sign)
Example #16
Source File: quantization.py From fine-lm with MIT License | 6 votes |
def _randomized_roundoff_to_bfloat16(x, noise, cand1, cand2): """Round-off x to cand1 or to cand2 in an unbiased way. Cand1 and cand2 are the same shape as x. For every element of x, the corresponding elements of cand1 and cand2 should be the two closest bfloat16 values to x. Order does not matter. cand1 and cand2 must differ from each other. Args: x: A float32 Tensor. noise: A Tensor broadcastable to the shape of x containing random uniform values in [0.0, 1.0]. cand1: A bfloat16 Tensor the same shape as x. cand2: A bfloat16 Tensor the same shape as x. Returns: A bfloat16 Tensor. """ cand1_f = tf.to_float(cand1) cand2_f = tf.to_float(cand2) step_size = cand2_f - cand1_f fpart = (x - cand1_f) / step_size ret = tf.where(tf.greater(fpart, noise), cand2, cand1) return ret
Example #17
Source File: tf_preprocessing.py From gen-efficientnet-pytorch with Apache License 2.0 | 6 votes |
def preprocess_image(image_bytes, is_training=False, use_bfloat16=False, image_size=IMAGE_SIZE, interpolation='bicubic'): """Preprocesses the given image. Args: image_bytes: `Tensor` representing an image binary of arbitrary size. is_training: `bool` for whether the preprocessing is for training. use_bfloat16: `bool` for whether to use bfloat16. image_size: image size. interpolation: image interpolation method Returns: A preprocessed image `Tensor` with value range of [0, 255]. """ if is_training: return preprocess_for_train(image_bytes, use_bfloat16, image_size, interpolation) else: return preprocess_for_eval(image_bytes, use_bfloat16, image_size, interpolation)
Example #18
Source File: tf_preprocessing.py From gen-efficientnet-pytorch with Apache License 2.0 | 6 votes |
def preprocess_for_eval(image_bytes, use_bfloat16, image_size=IMAGE_SIZE, interpolation='bicubic'): """Preprocesses the given image for evaluation. Args: image_bytes: `Tensor` representing an image binary of arbitrary size. use_bfloat16: `bool` for whether to use bfloat16. image_size: image size. interpolation: image interpolation method Returns: A preprocessed image `Tensor`. """ resize_method = tf.image.ResizeMethod.BICUBIC if interpolation == 'bicubic' else tf.image.ResizeMethod.BILINEAR image = _decode_and_center_crop(image_bytes, image_size, resize_method) image = tf.reshape(image, [image_size, image_size, 3]) image = tf.image.convert_image_dtype( image, dtype=tf.bfloat16 if use_bfloat16 else tf.float32) return image
Example #19
Source File: t2t_model.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def model_fn(self, features): with tf.variable_scope(tf.get_variable_scope(), use_resource=True) as vs: self._add_variable_scope("model_fn", vs) transformed_features = self.bottom(features) if self.hparams.activation_dtype == "bfloat16": for k, v in sorted(six.iteritems(transformed_features)): if v.dtype == tf.float32: transformed_features[k] = tf.cast(v, tf.bfloat16) with tf.variable_scope("body") as body_vs: self._add_variable_scope("body", body_vs) log_info("Building model body") body_out = self.body(transformed_features) output, losses = self._normalize_body_output(body_out) if "training" in losses: log_info("Skipping T2TModel top and loss because training loss " "returned from body") logits = output else: logits = self.top(output, features) losses["training"] = 0.0 if (self._hparams.mode != tf.estimator.ModeKeys.PREDICT and self._hparams.mode != "attack"): losses["training"] = self.loss(logits, features) return logits, losses
Example #20
Source File: quantization.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def decode(self, x): """Decode bfloat16 to float32.""" raise NotImplementedError("decode not implemented")
Example #21
Source File: quantization.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def encode(self, x, noise): """Encode float32 to bfloat16. Args: x: a float32 Tensor noise: a float32 Tensor with values in [0, 1), broadcastable to shape(x) Returns: a bfloat16 Tensor """ raise NotImplementedError("encode not implemented")
Example #22
Source File: t2t_model.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def _loss_single(self, logits, target_modality, feature): # The current bfloat16 version still uses float32 for most parts of backward # propagation to keep model quality, so cast back before computing the loss # value. if not target_modality: log_warn(_no_problem_err("loss")) return (tf.constant(0., dtype=tf.float32), tf.constant(1., dtype=tf.float32)) loss_num, loss_den = target_modality.loss(logits, feature) loss_num *= self._problem_hparams.loss_multiplier if hasattr(self.hparams, "problem") and hasattr( self.hparams.problem, "task_list"): loss_num, loss_den, summaries = multi_problem.aggregate_task_losses( self.hparams, self._problem_hparams, logits, target_modality, feature ) for key, val in summaries: tf.summary.scalar(key, val) return loss_num, loss_den
Example #23
Source File: generic_ops.py From models with Apache License 2.0 | 5 votes |
def mzip(x,y): if x.dtype== tf.bfloat16: x = r_cast(x) y = r_cast(y) return zip(x,y)
Example #24
Source File: imagenet_input.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def __init__(self, is_training, use_bfloat16, transpose_input, data_dir, image_size=224, num_parallel_calls=64, num_cores=8, prefetch_depth_auto_tune=False, cache=False): """Create an input from TFRecord files. Args: is_training: `bool` for whether the input is for training use_bfloat16: If True, use bfloat16 precision; else use float32. transpose_input: 'bool' for whether to use the double transpose trick data_dir: `str` for the directory of the training and validation data; if 'null' (the literal string 'null') or implicitly False then construct a null pipeline, consisting of empty images and blank labels. image_size: size of input images num_parallel_calls: concurrency level to use when reading data from disk. num_cores: Number of prefetch threads prefetch_depth_auto_tune: Auto-tuning prefetch depths in input pipeline cache: if true, fill the dataset by repeating from its cache """ super(ImageNetInput, self).__init__( is_training=is_training, image_size=image_size, use_bfloat16=use_bfloat16, num_cores=num_cores, prefetch_depth_auto_tune=prefetch_depth_auto_tune, transpose_input=transpose_input) self.data_dir = data_dir if self.data_dir == 'null' or not self.data_dir: self.data_dir = None self.num_parallel_calls = num_parallel_calls self.cache = cache
Example #25
Source File: modeling.py From models with Apache License 2.0 | 5 votes |
def get_sequence_output(self): """Gets final hidden layer of encoder. Returns: float Tensor of shape [batch_size, seq_length, hidden_size] corresponding to the final hidden of the transformer encoder. In bfloat16 enabled execution, with only model covered in bfloat16 scope, return the output in float32. Other cases return as is """ if self.bf16_scope == True: return tf.cast(self.sequence_output, tf.float32) else : return self.sequence_output
Example #26
Source File: modeling.py From models with Apache License 2.0 | 5 votes |
def get_pooled_output(self): """ In bfloat16 enabled execution, with only model covered in bfloat16 scope, return the output in float32. Other cases return as is """ if self.bf16_scope == True: return tf.cast(self.pooled_output, tf.float32) else : return self.pooled_output
Example #27
Source File: generic_ops.py From models with Apache License 2.0 | 5 votes |
def set_global_precision(dt): # Set Keras API precision global _keras_policy if dt == tf.bfloat16: _keras_policy=tf.keras.mixed_precision.experimental.Policy("mixed_bfloat16") # Set basic API precision set_rprecision(dt)
Example #28
Source File: generic_ops.py From models with Apache License 2.0 | 5 votes |
def mzip(x,y): if x.dtype== tf.bfloat16: x = r_cast(x) y = r_cast(y) return zip(x,y)
Example #29
Source File: modeling.py From models with Apache License 2.0 | 5 votes |
def get_sequence_output(self): """Gets final hidden layer of encoder. Returns: float Tensor of shape [batch_size, seq_length, hidden_size] corresponding to the final hidden of the transformer encoder. In bfloat16 enabled execution, with only model covered in bfloat16 scope, return the output in float32. Other cases return as is """ if self.bf16_scope == True: return tf.cast(self.sequence_output, tf.float32) else : return self.sequence_output
Example #30
Source File: modeling.py From models with Apache License 2.0 | 5 votes |
def get_pooled_output(self): """ In bfloat16 enabled execution, with only model covered in bfloat16 scope, return the output in float32. Other cases return as is """ if self.bf16_scope == True: return tf.cast(self.pooled_output, tf.float32) else : return self.pooled_output