Python tensorflow.setdiff1d() Examples
The following are 13
code examples of tensorflow.setdiff1d().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: listdiff_op_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def _testListDiff(self, x, y, out, idx): for dtype in _TYPES: if dtype == tf.string: x = [tf.compat.as_bytes(str(a)) for a in x] y = [tf.compat.as_bytes(str(a)) for a in y] out = [tf.compat.as_bytes(str(a)) for a in out] for diff_func in [tf.setdiff1d]: with self.test_session() as sess: x_tensor = tf.convert_to_tensor(x, dtype=dtype) y_tensor = tf.convert_to_tensor(y, dtype=dtype) out_tensor, idx_tensor = diff_func(x_tensor, y_tensor) tf_out, tf_idx = sess.run([out_tensor, idx_tensor]) self.assertAllEqual(tf_out, out) self.assertAllEqual(tf_idx, idx) self.assertEqual(1, out_tensor.get_shape().ndims) self.assertEqual(1, idx_tensor.get_shape().ndims)
Example #2
Source File: det_utils.py From MobileNet with Apache License 2.0 | 6 votes |
def find_dup(a): """ Find the duplicated elements in 1-D a tensor. Args: a: 1-D tensor. Return: more_than_one_vals: duplicated value in a. indexes_in_a: duplicated value's index in a. dups_in_a: duplicated value with duplicate in a. """ unique_a_vals, unique_idx = tf.unique(a) count_a_unique = tf.unsorted_segment_sum(tf.ones_like(a), unique_idx, tf.shape(a)[0]) more_than_one = tf.greater(count_a_unique, 1) more_than_one_idx = tf.squeeze(tf.where(more_than_one)) more_than_one_vals = tf.squeeze(tf.gather(unique_a_vals, more_than_one_idx)) not_duplicated, _ = tf.setdiff1d(a, more_than_one_vals) dups_in_a, indexes_in_a = tf.setdiff1d(a, not_duplicated) return more_than_one_vals, indexes_in_a, dups_in_a
Example #3
Source File: array_ops.py From lambda-packs with MIT License | 5 votes |
def setdiff1d(x, y, index_dtype=dtypes.int32, name=None): return gen_array_ops._list_diff(x, y, index_dtype, name)
Example #4
Source File: array_ops.py From lambda-packs with MIT License | 5 votes |
def sparse_mask(a, mask_indices, name=None): """Masks elements of `IndexedSlices`. Given an `IndexedSlices` instance `a`, returns another `IndexedSlices` that contains a subset of the slices of `a`. Only the slices at indices not specified in `mask_indices` are returned. This is useful when you need to extract a subset of slices in an `IndexedSlices` object. For example: ```python # `a` contains slices at indices [12, 26, 37, 45] from a large tensor # with shape [1000, 10] a.indices => [12, 26, 37, 45] tf.shape(a.values) => [4, 10] # `b` will be the subset of `a` slices at its second and third indices, so # we want to mask its first and last indices (which are at absolute # indices 12, 45) b = tf.sparse_mask(a, [12, 45]) b.indices => [26, 37] tf.shape(b.values) => [2, 10] ``` Args: a: An `IndexedSlices` instance. mask_indices: Indices of elements to mask. name: A name for the operation (optional). Returns: The masked `IndexedSlices` instance. """ with ops.name_scope(name, "sparse_mask", [a, mask_indices]) as name: indices = a.indices out_indices, to_gather = setdiff1d(indices, mask_indices) out_values = gather(a.values, to_gather, name=name) return ops.IndexedSlices(out_values, out_indices, a.dense_shape)
Example #5
Source File: array_ops.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def setdiff1d(x, y, index_dtype=dtypes.int32, name=None): return gen_array_ops._list_diff(x, y, index_dtype, name)
Example #6
Source File: array_ops.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def sparse_mask(a, mask_indices, name=None): """Masks elements of `IndexedSlices`. Given an `IndexedSlices` instance `a`, returns another `IndexedSlices` that contains a subset of the slices of `a`. Only the slices at indices not specified in `mask_indices` are returned. This is useful when you need to extract a subset of slices in an `IndexedSlices` object. For example: ```python # `a` contains slices at indices [12, 26, 37, 45] from a large tensor # with shape [1000, 10] a.indices => [12, 26, 37, 45] tf.shape(a.values) => [4, 10] # `b` will be the subset of `a` slices at its second and third indices, so # we want to mask its first and last indices (which are at absolute # indices 12, 45) b = tf.sparse_mask(a, [12, 45]) b.indices => [26, 37] tf.shape(b.values) => [2, 10] ``` Args: a: An `IndexedSlices` instance. mask_indices: Indices of elements to mask. name: A name for the operation (optional). Returns: The masked `IndexedSlices` instance. """ with ops.name_scope(name, "sparse_mask", [a, mask_indices]) as name: indices = a.indices out_indices, to_gather = setdiff1d(indices, mask_indices) out_values = gather(a.values, to_gather, name=name) return ops.IndexedSlices(out_values, out_indices, a.dense_shape)
Example #7
Source File: nar_model.py From chameleon_recsys with MIT License | 5 votes |
def get_neg_items_session(self, session_item_ids, candidate_samples, num_neg_samples): #Ignoring negative samples clicked within the session (keeps the order and repetition of candidate_samples) valid_samples_session, _ = tf.setdiff1d(candidate_samples, session_item_ids, index_dtype=tf.int64) #Generating a random list of negative samples for each click (with no repetition) session_clicks_neg_items = tf.map_fn(lambda click_id: tf.cond(tf.equal(click_id, tf.constant(0, tf.int64)), lambda: tf.zeros(num_neg_samples, tf.int64), lambda: self.get_neg_items_click(valid_samples_session, num_neg_samples) ) , session_item_ids) return session_clicks_neg_items
Example #8
Source File: array_ops.py From deep_image_model with Apache License 2.0 | 5 votes |
def setdiff1d(x, y, index_dtype=dtypes.int32, name=None): return gen_array_ops._list_diff(x, y, index_dtype, name)
Example #9
Source File: array_ops.py From deep_image_model with Apache License 2.0 | 5 votes |
def sparse_mask(a, mask_indices, name=None): """Masks elements of `IndexedSlices`. Given an `IndexedSlices` instance `a`, returns another `IndexedSlices` that contains a subset of the slices of `a`. Only the slices at indices not specified in `mask_indices` are returned. This is useful when you need to extract a subset of slices in an `IndexedSlices` object. For example: ```python # `a` contains slices at indices [12, 26, 37, 45] from a large tensor # with shape [1000, 10] a.indices => [12, 26, 37, 45] tf.shape(a.values) => [4, 10] # `b` will be the subset of `a` slices at its second and third indices, so # we want to mask its first and last indices (which are at absolute # indices 12, 45) b = tf.sparse_mask(a, [12, 45]) b.indices => [26, 37] tf.shape(b.values) => [2, 10] ``` Args: * `a`: An `IndexedSlices` instance. * `mask_indices`: Indices of elements to mask. * `name`: A name for the operation (optional). Returns: The masked `IndexedSlices` instance. """ with ops.name_scope(name, "sparse_mask", [a, mask_indices]) as name: indices = a.indices out_indices, to_gather = setdiff1d(indices, mask_indices) out_values = gather(a.values, to_gather, name=name) return ops.IndexedSlices(out_values, out_indices, a.dense_shape)
Example #10
Source File: array_ops.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def setdiff1d(x, y, index_dtype=dtypes.int32, name=None): return gen_array_ops._list_diff(x, y, index_dtype, name)
Example #11
Source File: array_ops.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def sparse_mask(a, mask_indices, name=None): """Masks elements of `IndexedSlices`. Given an `IndexedSlices` instance `a`, returns another `IndexedSlices` that contains a subset of the slices of `a`. Only the slices at indices not specified in `mask_indices` are returned. This is useful when you need to extract a subset of slices in an `IndexedSlices` object. For example: ```python # `a` contains slices at indices [12, 26, 37, 45] from a large tensor # with shape [1000, 10] a.indices # [12, 26, 37, 45] tf.shape(a.values) # [4, 10] # `b` will be the subset of `a` slices at its second and third indices, so # we want to mask its first and last indices (which are at absolute # indices 12, 45) b = tf.sparse_mask(a, [12, 45]) b.indices # [26, 37] tf.shape(b.values) # [2, 10] ``` Args: a: An `IndexedSlices` instance. mask_indices: Indices of elements to mask. name: A name for the operation (optional). Returns: The masked `IndexedSlices` instance. """ with ops.name_scope(name, "sparse_mask", [a, mask_indices]) as name: indices = a.indices out_indices, to_gather = setdiff1d(indices, mask_indices) out_values = gather(a.values, to_gather, name=name) return ops.IndexedSlices(out_values, out_indices, a.dense_shape)
Example #12
Source File: array_ops.py From keras-lambda with MIT License | 5 votes |
def setdiff1d(x, y, index_dtype=dtypes.int32, name=None): return gen_array_ops._list_diff(x, y, index_dtype, name)
Example #13
Source File: array_ops.py From keras-lambda with MIT License | 5 votes |
def sparse_mask(a, mask_indices, name=None): """Masks elements of `IndexedSlices`. Given an `IndexedSlices` instance `a`, returns another `IndexedSlices` that contains a subset of the slices of `a`. Only the slices at indices not specified in `mask_indices` are returned. This is useful when you need to extract a subset of slices in an `IndexedSlices` object. For example: ```python # `a` contains slices at indices [12, 26, 37, 45] from a large tensor # with shape [1000, 10] a.indices => [12, 26, 37, 45] tf.shape(a.values) => [4, 10] # `b` will be the subset of `a` slices at its second and third indices, so # we want to mask its first and last indices (which are at absolute # indices 12, 45) b = tf.sparse_mask(a, [12, 45]) b.indices => [26, 37] tf.shape(b.values) => [2, 10] ``` Args: a: An `IndexedSlices` instance. mask_indices: Indices of elements to mask. name: A name for the operation (optional). Returns: The masked `IndexedSlices` instance. """ with ops.name_scope(name, "sparse_mask", [a, mask_indices]) as name: indices = a.indices out_indices, to_gather = setdiff1d(indices, mask_indices) out_values = gather(a.values, to_gather, name=name) return ops.IndexedSlices(out_values, out_indices, a.dense_shape)