Python tensorflow.custom_gradient() Examples
The following are 30
code examples of tensorflow.custom_gradient().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: constrained_optimizer.py From tensorflow_constrained_optimization with Apache License 2.0 | 6 votes |
def get_loss_fn(self, minimization_problem): """Returns the loss function. The resulting loss function should use `tf.custom_gradient` to override its gradients. First, the gradients w.r.t. the internal state should be written in terms of the constraints, instead of the proxy_constraints. Second, the gradients may be negated, depending on the formulation (for example, for the Lagrangian formulation, we wish to maximize over the Lagrange multipliers, so the associated gradients will be negated). Args: minimization_problem: `ConstrainedMinimizationProblem`, the problem to minimize. Returns: The loss function. """
Example #2
Source File: Quantizers.py From TensorQuant with Apache License 2.0 | 6 votes |
def quantize(self, tensor): @tf.custom_gradient def op(tensor): def grad(dy): return dy if self.auto_threshold: threshold = -0.7 * tf.math.reduce_sum(tf.math.abs(tensor))/tf.dtypes.cast(tf.size(tensor),tensor.dtype) else: threshold = self.threshold out = tf.ones_like(tensor)*-1 out += tf.dtypes.cast(tf.greater(tensor, -threshold),tensor.dtype) out += tf.dtypes.cast(tf.greater(tensor, threshold),tensor.dtype) out *= self.marginal out = tf.identity(out, name=str(self)+"_output") return out, grad return op(tensor) ############################### ### Other ###############################
Example #3
Source File: cvxpylayer.py From cvxpylayers with Apache License 2.0 | 6 votes |
def __call__(self, *parameters, solver_args={}): """Solve problem (or a batch of problems) corresponding to `parameters` Args: parameters: a sequence of tf.Tensors; the n-th Tensor specifies the value for the n-th CVXPY Parameter. These Tensors can be batched: if a Tensor has 3 dimensions, then its first dimension is interpreted as the batch size. solver_args: a dict of optional arguments, to send to `diffcp`. Keys should be the names of keyword arguments. Returns: a list of optimal variable values, one for each CVXPY Variable supplied to the constructor. """ if len(parameters) != len(self.params): raise ValueError('A tensor must be provided for each CVXPY ' 'parameter; received %d tensors, expected %d' % ( len(parameters), len(self.params))) compute = tf.custom_gradient( lambda *parameters: self._compute(parameters, solver_args)) return compute(*parameters)
Example #4
Source File: Quantizers.py From TensorQuant with Apache License 2.0 | 6 votes |
def P_quantize(self, tensor): @tf.custom_gradient def op(tensor): def grad(dy): return dy #randn = tf.random.uniform(tensor.shape, minval=0, maxval=1 ) #mask = tf.dtypes.cast(tf.less(tensor,randn), tensor.dtype) out= tf.math.floor(tf.math.log(tf.math.abs(tensor))/tf.math.log(tf.constant(2,dtype=tensor.dtype))) #+ mask out= tf.math.pow(2*tf.ones_like(tensor),out) out= out*tf.sign(tensor) out = tf.identity(out, name=str(self)+"_output") return out, grad return op(tensor) ############################### ### Sparse ###############################
Example #5
Source File: Quantizers.py From TensorQuant with Apache License 2.0 | 6 votes |
def quantize(self,tensor): @tf.custom_gradient def op(tensor): def grad(dy): return dy randn = tf.random.uniform(tensor.shape, minval=0, maxval=1 ) out_up = tf.math.ceil( tensor*(1<<self.fixed_prec) ) / (1<<self.fixed_prec) out_down = tf.math.floor( tensor*(1<<self.fixed_prec) ) / (1<<self.fixed_prec) out_mask = tf.less_equal( (tensor-tf.math.floor(tensor))*(1<<self.fixed_prec) ,randn ) out = out_down * tf.dtypes.cast(out_mask, tensor.dtype) + out_up * tf.dtypes.cast(tf.math.logical_not(out_mask), tensor.dtype) # handle overflow (saturate number towards maximum or minimum) out = tf.math.maximum( tf.math.minimum( out, self.fixed_max_signed ), self.fixed_min_signed) # tag output out = tf.identity(out, name=str(self)+"_output") return out, grad return op(tensor) ############################### ### Logarithmic ###############################
Example #6
Source File: quantizers.py From larq with Apache License 2.0 | 6 votes |
def ste_tern( x: tf.Tensor, threshold_value: float = 0.05, ternary_weight_networks: bool = False, clip_value: float = 1.0, ) -> tf.Tensor: @tf.custom_gradient def _call(x): if ternary_weight_networks: threshold = 0.7 * tf.reduce_sum(tf.abs(x)) / tf.cast(tf.size(x), x.dtype) else: threshold = threshold_value def grad(dy): return _clipped_gradient(x, dy, clip_value) return tf.sign(tf.sign(x + threshold) + tf.sign(x - threshold)), grad return _call(x)
Example #7
Source File: UtilLayers.py From TrackR-CNN with MIT License | 6 votes |
def __init__(self, name, inputs, tower_setup, initial_weights, hack_gradient_magnitude=1.0): super().__init__() assert len(initial_weights) == len(inputs) with tf.variable_scope(name): initializer = tf.constant_initializer(initial_weights) weights = self.create_bias_variable("linear_combination_weights", len(inputs), tower_setup, initializer=initializer) if hack_gradient_magnitude > 1.0: # https://stackoverflow.com/a/43948872 @tf.custom_gradient def amplify_gradient_layer(x): def grad(dy): return hack_gradient_magnitude * dy return tf.identity(x), grad weights = amplify_gradient_layer(weights) y = inputs[0] * weights[0] for n in range(1, len(inputs)): y += inputs[n] * weights[n] self.outputs.append(y) for n in range(len(inputs)): self.add_scalar_summary(weights[n], "linear_combination_weights_" + str(n))
Example #8
Source File: __init__.py From tfpyth with MIT License | 6 votes |
def eager_tensorflow_from_torch(func): """ Wraps a PyTorch function into a TensorFlow eager-mode function (ie can be executed within Tensorflow eager-mode). :param func: Function that takes PyTorch tensors and returns a PyTorch tensor. :return: Differentiable Tensorflow eager-mode function. """ @tf.custom_gradient def compute(*inputs): th_inputs = [th.tensor(tf_input.numpy(), requires_grad=True) for tf_input in inputs] th_output = func(*th_inputs) def compute_grad(d_output): th_d_output = th.tensor(d_output.numpy(), requires_grad=False) th_gradients = th.autograd.grad([th_output], th_inputs, grad_outputs=[th_d_output], allow_unused=True) tf_gradients = [tf.convert_to_tensor(th_gradient.numpy()) for th_gradient in th_gradients] return tf_gradients return tf.convert_to_tensor(th_output.detach().numpy()), compute_grad return compute
Example #9
Source File: networks_stylegan.py From higan with MIT License | 5 votes |
def downscale2d(x, factor=2): with tf.variable_scope('Downscale2D'): @tf.custom_gradient def func(x): y = _downscale2d(x, factor) @tf.custom_gradient def grad(dy): dx = _upscale2d(dy, factor, gain=1/factor**2) return dx, lambda ddx: _downscale2d(ddx, factor) return y, grad return func(x) #---------------------------------------------------------------------------- # Get/create weight tensor for a convolutional or fully-connected layer.
Example #10
Source File: ops.py From StyleGAN-Tensorflow with MIT License | 5 votes |
def blur2d(x, f, normalize=True): with tf.variable_scope('Blur2D'): @tf.custom_gradient def func(x): y = _blur2d(x, f, normalize) @tf.custom_gradient def grad(dy): dx = _blur2d(dy, f, normalize, flip=True) return dx, lambda ddx: _blur2d(ddx, f, normalize) return y, grad return func(x)
Example #11
Source File: ops.py From stylegan_reimplementation with Apache License 2.0 | 5 votes |
def apply_binomial_filter(x, f=[1,2,1], normalize=True): with tf.variable_scope('Blur2D'): @tf.custom_gradient def func(x): y = apply_binomial_filter_(x) @tf.custom_gradient def grad(dy): def gradgrad(ddx): return apply_binomial_filter_(ddx) dx = apply_binomial_filter_(dy) return dx, gradgrad return y, grad return func(x)
Example #12
Source File: dorefa.py From tensorpack with Apache License 2.0 | 5 votes |
def ternarize(x, thresh=0.05): """ Implemented Trained Ternary Quantization: https://arxiv.org/abs/1612.01064 Code modified from the authors' at: https://github.com/czhu95/ternarynet/blob/master/examples/Ternary-Net/ternary.py """ shape = x.get_shape() thre_x = tf.stop_gradient(tf.reduce_max(tf.abs(x)) * thresh) w_p = tf.get_variable('Wp', initializer=1.0, dtype=tf.float32) w_n = tf.get_variable('Wn', initializer=1.0, dtype=tf.float32) tf.summary.scalar(w_p.op.name + '-summary', w_p) tf.summary.scalar(w_n.op.name + '-summary', w_n) mask = tf.ones(shape) mask_p = tf.where(x > thre_x, tf.ones(shape) * w_p, mask) mask_np = tf.where(x < -thre_x, tf.ones(shape) * w_n, mask_p) mask_z = tf.where((x < thre_x) & (x > - thre_x), tf.zeros(shape), mask) @tf.custom_gradient def _sign_mask(x): return tf.sign(x) * mask_z, lambda dy: dy w = _sign_mask(x) w = w * mask_np tf.summary.histogram(w.name, w) return w
Example #13
Source File: networks_stylegan.py From interfacegan with MIT License | 5 votes |
def leaky_relu(x, alpha=0.2): with tf.variable_scope('LeakyReLU'): alpha = tf.constant(alpha, dtype=x.dtype, name='alpha') @tf.custom_gradient def func(x): y = tf.maximum(x, x * alpha) @tf.custom_gradient def grad(dy): dx = tf.where(y >= 0, dy, dy * alpha) return dx, lambda ddx: tf.where(y >= 0, ddx, ddx * alpha) return y, grad return func(x) #---------------------------------------------------------------------------- # Pixelwise feature vector normalization.
Example #14
Source File: differentiable_renderer_tensorflow.py From DEODR with BSD 2-Clause "Simplified" License | 5 votes |
def TensorflowDifferentiableRender2D(ij, colors, scene): """Tensorflow implementation of the 2D rendering function.""" @tf.custom_gradient def forward( ij, colors ): # using inner function as we don't differentate w.r.t scene nb_color_chanels = colors.shape[1] image = np.empty((scene.height, scene.width, nb_color_chanels)) z_buffer = np.empty((scene.height, scene.width)) scene.ij = np.array(ij) # should automatically detached according to # https://pytorch.org/docs/master/notes/extending.html scene.colors = np.array(colors) scene.depths = np.array(scene.depths) differentiable_renderer_cython.renderScene(scene, 1, image, z_buffer) def backward(image_b): scene.uv_b = np.zeros(scene.uv.shape) scene.ij_b = np.zeros(scene.ij.shape) scene.shade_b = np.zeros(scene.shade.shape) scene.colors_b = np.zeros(scene.colors.shape) scene.texture_b = np.zeros(scene.texture.shape) image_copy = ( image.copy() ) # making a copy to avoid removing antialiasing on the image returned by # the forward pass (the c++ backpropagation undo antialiasing), could be # optional if we don't care about getting aliased images differentiable_renderer_cython.renderSceneB( scene, 1, image_copy, z_buffer, image_b.numpy() ) return tf.constant(scene.ij_b), tf.constant(scene.colors_b) return tf.convert_to_tensor(image), backward return forward(ij, colors)
Example #15
Source File: networks_stylegan.py From higan with MIT License | 5 votes |
def blur2d(x, f=[1,2,1], normalize=True): with tf.variable_scope('Blur2D'): @tf.custom_gradient def func(x): y = _blur2d(x, f, normalize) @tf.custom_gradient def grad(dy): dx = _blur2d(dy, f, normalize, flip=True) return dx, lambda ddx: _blur2d(ddx, f, normalize) return y, grad return func(x)
Example #16
Source File: networks_stylegan.py From higan with MIT License | 5 votes |
def upscale2d(x, factor=2): with tf.variable_scope('Upscale2D'): @tf.custom_gradient def func(x): y = _upscale2d(x, factor) @tf.custom_gradient def grad(dy): dx = _downscale2d(dy, factor, gain=factor**2) return dx, lambda ddx: _upscale2d(ddx, factor) return y, grad return func(x)
Example #17
Source File: networks_stylegan.py From interfacegan with MIT License | 5 votes |
def blur2d(x, f=[1,2,1], normalize=True): with tf.variable_scope('Blur2D'): @tf.custom_gradient def func(x): y = _blur2d(x, f, normalize) @tf.custom_gradient def grad(dy): dx = _blur2d(dy, f, normalize, flip=True) return dx, lambda ddx: _blur2d(ddx, f, normalize) return y, grad return func(x)
Example #18
Source File: networks_stylegan.py From higan with MIT License | 5 votes |
def leaky_relu(x, alpha=0.2): with tf.variable_scope('LeakyReLU'): alpha = tf.constant(alpha, dtype=x.dtype, name='alpha') @tf.custom_gradient def func(x): y = tf.maximum(x, x * alpha) @tf.custom_gradient def grad(dy): dx = tf.where(y >= 0, dy, dy * alpha) return dx, lambda ddx: tf.where(y >= 0, ddx, ddx * alpha) return y, grad return func(x) #---------------------------------------------------------------------------- # Pixelwise feature vector normalization.
Example #19
Source File: upfirdn_2d.py From higan with MIT License | 5 votes |
def _upfirdn_2d_cuda(x, k, upx, upy, downx, downy, padx0, padx1, pady0, pady1): """Fast CUDA implementation of `upfirdn_2d()` using custom ops.""" x = tf.convert_to_tensor(x) k = np.asarray(k, dtype=np.float32) majorDim, inH, inW, minorDim = x.shape.as_list() kernelH, kernelW = k.shape assert inW >= 1 and inH >= 1 assert kernelW >= 1 and kernelH >= 1 assert isinstance(upx, int) and isinstance(upy, int) assert isinstance(downx, int) and isinstance(downy, int) assert isinstance(padx0, int) and isinstance(padx1, int) assert isinstance(pady0, int) and isinstance(pady1, int) outW = (inW * upx + padx0 + padx1 - kernelW) // downx + 1 outH = (inH * upy + pady0 + pady1 - kernelH) // downy + 1 assert outW >= 1 and outH >= 1 kc = tf.constant(k, dtype=x.dtype) gkc = tf.constant(k[::-1, ::-1], dtype=x.dtype) gpadx0 = kernelW - padx0 - 1 gpady0 = kernelH - pady0 - 1 gpadx1 = inW * upx - outW * downx + padx0 - upx + 1 gpady1 = inH * upy - outH * downy + pady0 - upy + 1 @tf.custom_gradient def func(x): y = _get_plugin().up_fir_dn2d(x=x, k=kc, upx=upx, upy=upy, downx=downx, downy=downy, padx0=padx0, padx1=padx1, pady0=pady0, pady1=pady1) y.set_shape([majorDim, outH, outW, minorDim]) @tf.custom_gradient def grad(dy): dx = _get_plugin().up_fir_dn2d(x=dy, k=gkc, upx=downx, upy=downy, downx=upx, downy=upy, padx0=gpadx0, padx1=gpadx1, pady0=gpady0, pady1=gpady1) dx.set_shape([majorDim, inH, inW, minorDim]) return dx, func return y, grad return func(x) #----------------------------------------------------------------------------
Example #20
Source File: networks_stylegan.py From higan with MIT License | 5 votes |
def upscale2d(x, factor=2): with tf.variable_scope('Upscale2D'): @tf.custom_gradient def func(x): y = _upscale2d(x, factor) @tf.custom_gradient def grad(dy): dx = _downscale2d(dy, factor, gain=factor**2) return dx, lambda ddx: _upscale2d(ddx, factor) return y, grad return func(x)
Example #21
Source File: networks_stylegan.py From higan with MIT License | 5 votes |
def downscale2d(x, factor=2): with tf.variable_scope('Downscale2D'): @tf.custom_gradient def func(x): y = _downscale2d(x, factor) @tf.custom_gradient def grad(dy): dx = _upscale2d(dy, factor, gain=1/factor**2) return dx, lambda ddx: _downscale2d(ddx, factor) return y, grad return func(x) #---------------------------------------------------------------------------- # Get/create weight tensor for a convolutional or fully-connected layer.
Example #22
Source File: networks_stylegan.py From interfacegan with MIT License | 5 votes |
def downscale2d(x, factor=2): with tf.variable_scope('Downscale2D'): @tf.custom_gradient def func(x): y = _downscale2d(x, factor) @tf.custom_gradient def grad(dy): dx = _upscale2d(dy, factor, gain=1/factor**2) return dx, lambda ddx: _downscale2d(ddx, factor) return y, grad return func(x) #---------------------------------------------------------------------------- # Get/create weight tensor for a convolutional or fully-connected layer.
Example #23
Source File: networks_stylegan.py From higan with MIT License | 5 votes |
def leaky_relu(x, alpha=0.2): with tf.variable_scope('LeakyReLU'): alpha = tf.constant(alpha, dtype=x.dtype, name='alpha') @tf.custom_gradient def func(x): y = tf.maximum(x, x * alpha) @tf.custom_gradient def grad(dy): dx = tf.where(y >= 0, dy, dy * alpha) return dx, lambda ddx: tf.where(y >= 0, ddx, ddx * alpha) return y, grad return func(x) #---------------------------------------------------------------------------- # Pixelwise feature vector normalization.
Example #24
Source File: networks_stylegan.py From interfacegan with MIT License | 5 votes |
def upscale2d(x, factor=2): with tf.variable_scope('Upscale2D'): @tf.custom_gradient def func(x): y = _upscale2d(x, factor) @tf.custom_gradient def grad(dy): dx = _downscale2d(dy, factor, gain=factor**2) return dx, lambda ddx: _upscale2d(ddx, factor) return y, grad return func(x)
Example #25
Source File: Quantizers.py From TensorQuant with Apache License 2.0 | 5 votes |
def quantize(self, tensor): @tf.custom_gradient def op(tensor): def grad(dy): return dy out=tf.dtypes.cast(tf.dtypes.cast(tensor,tf.float16),tensor.dtype) out = tf.identity(out, name=str(self)+"_output") return out, grad return op(tensor) ############################### ### Binary ###############################
Example #26
Source File: ops.py From StyleGAN-Tensorflow with MIT License | 5 votes |
def upscale2d(x, factor=2): with tf.variable_scope('Upscale2D'): @tf.custom_gradient def func(x): y = _upscale2d(x, factor) @tf.custom_gradient def grad(dy): dx = _downscale2d(dy, factor, gain=factor ** 2) return dx, lambda ddx: _upscale2d(ddx, factor) return y, grad return func(x)
Example #27
Source File: ops.py From StyleGAN-Tensorflow with MIT License | 5 votes |
def downscale2d(x, factor=2): with tf.variable_scope('Downscale2D'): @tf.custom_gradient def func(x): y = _downscale2d(x, factor) @tf.custom_gradient def grad(dy): dx = _upscale2d(dy, factor, gain=1 / factor ** 2) return dx, lambda ddx: _downscale2d(ddx, factor) return y, grad return func(x)
Example #28
Source File: trainer.py From cloudml-samples with Apache License 2.0 | 5 votes |
def call(self, input_): @tf.custom_gradient def _call(input_): def reversed_gradient(output_grads): return self.weight * tf.negative(output_grads) return input_, reversed_gradient return _call(input_) # ## The model function # The network consists of 3 sub-networks: # # * Feature extractor: extracts internal representation for both the source and target distributions. # # * Label predictor: predicts label from the extracted features. # # * Domain classifier: classifies the origin (`source` or `target`) of the extracted features. # # # Both the label predictor and the domain classifier will try to minimize # classification loss, but the gradients backpropagated from the domain # classifier to the feature extractor have their signs reversed. # # # This model function also shows how to use `host_call` to output summaries. #
Example #29
Source File: softmax.py From dgl with Apache License 2.0 | 5 votes |
def edge_softmax(graph, logits, eids=ALL): """Closure for tf.custom_gradient""" @tf.custom_gradient def _lambda(logits): return edge_softmax_real(graph, logits, eids=eids) return _lambda(logits)
Example #30
Source File: tensor.py From dgl with Apache License 2.0 | 5 votes |
def binary_reduce(reducer, binary_op, graph, lhs, rhs, lhs_data, rhs_data, out_size, lhs_map=(None, None), rhs_map=(None, None), out_map=(None, None)): @tf.custom_gradient def _lambda(lhs_data, rhs_data): return binary_reduce_real(reducer, binary_op, graph, lhs, rhs, lhs_data, rhs_data, out_size, lhs_map, rhs_map, out_map) return _lambda(lhs_data, rhs_data)