Python tensorflow.parse_csv() Examples
The following are 9
code examples of tensorflow.parse_csv().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: iris_data.py From Deep-Learning-with-TensorFlow-Second-Edition with MIT License | 6 votes |
def eval_input_fn(features, labels, batch_size): """An input function for evaluation or prediction""" features=dict(features) if labels is None: # No labels, use only features. inputs = features else: inputs = (features, labels) # Convert the inputs to a Dataset. dataset = tf.data.Dataset.from_tensor_slices(inputs) # Batch the examples assert batch_size is not None, "batch_size must not be None" dataset = dataset.batch(batch_size) # Return the dataset. return dataset # The remainder of this file contains a simple example of a csv parser, # implemented using a the `Dataset` class. # `tf.parse_csv` sets the types of the outputs to match the examples given in # the `record_defaults` argument.
Example #2
Source File: iris_data.py From yolo_v2 with Apache License 2.0 | 6 votes |
def eval_input_fn(features, labels, batch_size): """An input function for evaluation or prediction""" features=dict(features) if labels is None: # No labels, use only features. inputs = features else: inputs = (features, labels) # Convert the inputs to a Dataset. dataset = tf.data.Dataset.from_tensor_slices(inputs) # Batch the examples assert batch_size is not None, "batch_size must not be None" dataset = dataset.batch(batch_size) # Return the read end of the pipeline. return dataset.make_one_shot_iterator().get_next() # The remainder of this file contains a simple example of a csv parser, # implemented using a the `Dataset` class. # `tf.parse_csv` sets the types of the outputs to match the examples given in # the `record_defaults` argument.
Example #3
Source File: iris_data.py From Gun-Detector with Apache License 2.0 | 6 votes |
def eval_input_fn(features, labels, batch_size): """An input function for evaluation or prediction""" features=dict(features) if labels is None: # No labels, use only features. inputs = features else: inputs = (features, labels) # Convert the inputs to a Dataset. dataset = tf.data.Dataset.from_tensor_slices(inputs) # Batch the examples assert batch_size is not None, "batch_size must not be None" dataset = dataset.batch(batch_size) # Return the dataset. return dataset # The remainder of this file contains a simple example of a csv parser, # implemented using a the `Dataset` class. # `tf.parse_csv` sets the types of the outputs to match the examples given in # the `record_defaults` argument.
Example #4
Source File: iris_data.py From multithreaded-estimators with Apache License 2.0 | 6 votes |
def load_data(y_name='Species'): """Returns the iris dataset as (train_x, train_y), (test_x, test_y).""" train_path, test_path = maybe_download() train = pd.read_csv(train_path, names=CSV_COLUMN_NAMES, header=0) train_x, train_y = train, train.pop(y_name) test = pd.read_csv(test_path, names=CSV_COLUMN_NAMES, header=0) test_x, test_y = test, test.pop(y_name) return (train_x, train_y), (test_x, test_y) # The remainder of this file contains a simple example of a csv parser, # implemented using a the `Dataset` class. # `tf.parse_csv` sets the types of the outputs to match the examples given in # the `record_defaults` argument.
Example #5
Source File: iris_data.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 6 votes |
def eval_input_fn(features, labels, batch_size): """An input function for evaluation or prediction""" features=dict(features) if labels is None: # No labels, use only features. inputs = features else: inputs = (features, labels) # Convert the inputs to a Dataset. dataset = tf.data.Dataset.from_tensor_slices(inputs) # Batch the examples assert batch_size is not None, "batch_size must not be None" dataset = dataset.batch(batch_size) # Return the dataset. return dataset # The remainder of this file contains a simple example of a csv parser, # implemented using the `Dataset` class. # `tf.parse_csv` sets the types of the outputs to match the examples given in # the `record_defaults` argument.
Example #6
Source File: iris_data.py From auptimizer with GNU General Public License v3.0 | 6 votes |
def eval_input_fn(features, labels, batch_size): """An input function for evaluation or prediction""" features=dict(features) if labels is None: # No labels, use only features. inputs = features else: inputs = (features, labels) # Convert the inputs to a Dataset. dataset = tf.data.Dataset.from_tensor_slices(inputs) # Batch the examples assert batch_size is not None, "batch_size must not be None" dataset = dataset.batch(batch_size) # Return the dataset. return dataset # The remainder of this file contains a simple example of a csv parser, # implemented using the `Dataset` class. # `tf.parse_csv` sets the types of the outputs to match the examples given in # the `record_defaults` argument.
Example #7
Source File: iris_data_utils.py From mlflow with Apache License 2.0 | 6 votes |
def eval_input_fn(features, labels, batch_size): """An input function for evaluation or prediction""" features = dict(features) if labels is None: # No labels, use only features. inputs = features else: inputs = (features, labels) # Convert the inputs to a Dataset. dataset = tf.data.Dataset.from_tensor_slices(inputs) # Batch the examples assert batch_size is not None, "batch_size must not be None" dataset = dataset.batch(batch_size) # Return the dataset. return dataset # The remainder of this file contains a simple example of a csv parser, # implemented using the `Dataset` class. # `tf.parse_csv` sets the types of the outputs to match the examples given in # the `record_defaults` argument.
Example #8
Source File: iris_data.py From object_detection_with_tensorflow with MIT License | 6 votes |
def eval_input_fn(features, labels, batch_size): """An input function for evaluation or prediction""" features=dict(features) if labels is None: # No labels, use only features. inputs = features else: inputs = (features, labels) # Convert the inputs to a Dataset. dataset = tf.data.Dataset.from_tensor_slices(inputs) # Batch the examples assert batch_size is not None, "batch_size must not be None" dataset = dataset.batch(batch_size) # Return the read end of the pipeline. return dataset.make_one_shot_iterator().get_next() # The remainder of this file contains a simple example of a csv parser, # implemented using a the `Dataset` class. # `tf.parse_csv` sets the types of the outputs to match the examples given in # the `record_defaults` argument.
Example #9
Source File: iris_data.py From g-tensorflow-models with Apache License 2.0 | 6 votes |
def eval_input_fn(features, labels, batch_size): """An input function for evaluation or prediction""" features=dict(features) if labels is None: # No labels, use only features. inputs = features else: inputs = (features, labels) # Convert the inputs to a Dataset. dataset = tf.data.Dataset.from_tensor_slices(inputs) # Batch the examples assert batch_size is not None, "batch_size must not be None" dataset = dataset.batch(batch_size) # Return the dataset. return dataset # The remainder of this file contains a simple example of a csv parser, # implemented using the `Dataset` class. # `tf.parse_csv` sets the types of the outputs to match the examples given in # the `record_defaults` argument.