Python tensorflow.scatter_mul() Examples
The following are 12
code examples of tensorflow.scatter_mul().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: memory.py From DOTA_models with Apache License 2.0 | 5 votes |
def make_update_op(self, upd_idxs, upd_keys, upd_vals, batch_size, use_recent_idx, intended_output): """Function that creates all the update ops.""" base_update_op = super(LSHMemory, self).make_update_op( upd_idxs, upd_keys, upd_vals, batch_size, use_recent_idx, intended_output) # compute hash slots to be updated hash_slot_idxs = self.get_hash_slots(upd_keys) # make updates update_ops = [] with tf.control_dependencies([base_update_op]): for i, slot_idxs in enumerate(hash_slot_idxs): # for each slot, choose which entry to replace entry_idx = tf.random_uniform([batch_size], maxval=self.num_per_hash_slot, dtype=tf.int32) entry_mul = 1 - tf.one_hot(entry_idx, self.num_per_hash_slot, dtype=tf.int32) entry_add = (tf.expand_dims(upd_idxs, 1) * tf.one_hot(entry_idx, self.num_per_hash_slot, dtype=tf.int32)) mul_op = tf.scatter_mul(self.hash_slots[i], slot_idxs, entry_mul) with tf.control_dependencies([mul_op]): add_op = tf.scatter_add(self.hash_slots[i], slot_idxs, entry_add) update_ops.append(add_op) return tf.group(*update_ops)
Example #2
Source File: memory.py From yolo_v2 with Apache License 2.0 | 5 votes |
def make_update_op(self, upd_idxs, upd_keys, upd_vals, batch_size, use_recent_idx, intended_output): """Function that creates all the update ops.""" base_update_op = super(LSHMemory, self).make_update_op( upd_idxs, upd_keys, upd_vals, batch_size, use_recent_idx, intended_output) # compute hash slots to be updated hash_slot_idxs = self.get_hash_slots(upd_keys) # make updates update_ops = [] with tf.control_dependencies([base_update_op]): for i, slot_idxs in enumerate(hash_slot_idxs): # for each slot, choose which entry to replace entry_idx = tf.random_uniform([batch_size], maxval=self.num_per_hash_slot, dtype=tf.int32) entry_mul = 1 - tf.one_hot(entry_idx, self.num_per_hash_slot, dtype=tf.int32) entry_add = (tf.expand_dims(upd_idxs, 1) * tf.one_hot(entry_idx, self.num_per_hash_slot, dtype=tf.int32)) mul_op = tf.scatter_mul(self.hash_slots[i], slot_idxs, entry_mul) with tf.control_dependencies([mul_op]): add_op = tf.scatter_add(self.hash_slots[i], slot_idxs, entry_add) update_ops.append(add_op) return tf.group(*update_ops)
Example #3
Source File: memory.py From Gun-Detector with Apache License 2.0 | 5 votes |
def make_update_op(self, upd_idxs, upd_keys, upd_vals, batch_size, use_recent_idx, intended_output): """Function that creates all the update ops.""" base_update_op = super(LSHMemory, self).make_update_op( upd_idxs, upd_keys, upd_vals, batch_size, use_recent_idx, intended_output) # compute hash slots to be updated hash_slot_idxs = self.get_hash_slots(upd_keys) # make updates update_ops = [] with tf.control_dependencies([base_update_op]): for i, slot_idxs in enumerate(hash_slot_idxs): # for each slot, choose which entry to replace entry_idx = tf.random_uniform([batch_size], maxval=self.num_per_hash_slot, dtype=tf.int32) entry_mul = 1 - tf.one_hot(entry_idx, self.num_per_hash_slot, dtype=tf.int32) entry_add = (tf.expand_dims(upd_idxs, 1) * tf.one_hot(entry_idx, self.num_per_hash_slot, dtype=tf.int32)) mul_op = tf.scatter_mul(self.hash_slots[i], slot_idxs, entry_mul) with tf.control_dependencies([mul_op]): add_op = tf.scatter_add(self.hash_slots[i], slot_idxs, entry_add) update_ops.append(add_op) return tf.group(*update_ops)
Example #4
Source File: scatter_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testVariableRankMul(self): self._VariableRankTests(tf.scatter_mul)
Example #5
Source File: scatter_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testRepeatIndicesMul(self): self._VariableRankTests(tf.scatter_mul, True)
Example #6
Source File: memory.py From hands-detection with MIT License | 5 votes |
def make_update_op(self, upd_idxs, upd_keys, upd_vals, batch_size, use_recent_idx, intended_output): """Function that creates all the update ops.""" base_update_op = super(LSHMemory, self).make_update_op( upd_idxs, upd_keys, upd_vals, batch_size, use_recent_idx, intended_output) # compute hash slots to be updated hash_slot_idxs = self.get_hash_slots(upd_keys) # make updates update_ops = [] with tf.control_dependencies([base_update_op]): for i, slot_idxs in enumerate(hash_slot_idxs): # for each slot, choose which entry to replace entry_idx = tf.random_uniform([batch_size], maxval=self.num_per_hash_slot, dtype=tf.int32) entry_mul = 1 - tf.one_hot(entry_idx, self.num_per_hash_slot, dtype=tf.int32) entry_add = (tf.expand_dims(upd_idxs, 1) * tf.one_hot(entry_idx, self.num_per_hash_slot, dtype=tf.int32)) mul_op = tf.scatter_mul(self.hash_slots[i], slot_idxs, entry_mul) with tf.control_dependencies([mul_op]): add_op = tf.scatter_add(self.hash_slots[i], slot_idxs, entry_add) update_ops.append(add_op) return tf.group(*update_ops)
Example #7
Source File: memory.py From object_detection_kitti with Apache License 2.0 | 5 votes |
def make_update_op(self, upd_idxs, upd_keys, upd_vals, batch_size, use_recent_idx, intended_output): """Function that creates all the update ops.""" base_update_op = super(LSHMemory, self).make_update_op( upd_idxs, upd_keys, upd_vals, batch_size, use_recent_idx, intended_output) # compute hash slots to be updated hash_slot_idxs = self.get_hash_slots(upd_keys) # make updates update_ops = [] with tf.control_dependencies([base_update_op]): for i, slot_idxs in enumerate(hash_slot_idxs): # for each slot, choose which entry to replace entry_idx = tf.random_uniform([batch_size], maxval=self.num_per_hash_slot, dtype=tf.int32) entry_mul = 1 - tf.one_hot(entry_idx, self.num_per_hash_slot, dtype=tf.int32) entry_add = (tf.expand_dims(upd_idxs, 1) * tf.one_hot(entry_idx, self.num_per_hash_slot, dtype=tf.int32)) mul_op = tf.scatter_mul(self.hash_slots[i], slot_idxs, entry_mul) with tf.control_dependencies([mul_op]): add_op = tf.scatter_add(self.hash_slots[i], slot_idxs, entry_add) update_ops.append(add_op) return tf.group(*update_ops)
Example #8
Source File: memory.py From object_detection_with_tensorflow with MIT License | 5 votes |
def make_update_op(self, upd_idxs, upd_keys, upd_vals, batch_size, use_recent_idx, intended_output): """Function that creates all the update ops.""" base_update_op = super(LSHMemory, self).make_update_op( upd_idxs, upd_keys, upd_vals, batch_size, use_recent_idx, intended_output) # compute hash slots to be updated hash_slot_idxs = self.get_hash_slots(upd_keys) # make updates update_ops = [] with tf.control_dependencies([base_update_op]): for i, slot_idxs in enumerate(hash_slot_idxs): # for each slot, choose which entry to replace entry_idx = tf.random_uniform([batch_size], maxval=self.num_per_hash_slot, dtype=tf.int32) entry_mul = 1 - tf.one_hot(entry_idx, self.num_per_hash_slot, dtype=tf.int32) entry_add = (tf.expand_dims(upd_idxs, 1) * tf.one_hot(entry_idx, self.num_per_hash_slot, dtype=tf.int32)) mul_op = tf.scatter_mul(self.hash_slots[i], slot_idxs, entry_mul) with tf.control_dependencies([mul_op]): add_op = tf.scatter_add(self.hash_slots[i], slot_idxs, entry_add) update_ops.append(add_op) return tf.group(*update_ops)
Example #9
Source File: memory.py From HumanRecognition with MIT License | 5 votes |
def make_update_op(self, upd_idxs, upd_keys, upd_vals, batch_size, use_recent_idx, intended_output): """Function that creates all the update ops.""" base_update_op = super(LSHMemory, self).make_update_op( upd_idxs, upd_keys, upd_vals, batch_size, use_recent_idx, intended_output) # compute hash slots to be updated hash_slot_idxs = self.get_hash_slots(upd_keys) # make updates update_ops = [] with tf.control_dependencies([base_update_op]): for i, slot_idxs in enumerate(hash_slot_idxs): # for each slot, choose which entry to replace entry_idx = tf.random_uniform([batch_size], maxval=self.num_per_hash_slot, dtype=tf.int32) entry_mul = 1 - tf.one_hot(entry_idx, self.num_per_hash_slot, dtype=tf.int32) entry_add = (tf.expand_dims(upd_idxs, 1) * tf.one_hot(entry_idx, self.num_per_hash_slot, dtype=tf.int32)) mul_op = tf.scatter_mul(self.hash_slots[i], slot_idxs, entry_mul) with tf.control_dependencies([mul_op]): add_op = tf.scatter_add(self.hash_slots[i], slot_idxs, entry_add) update_ops.append(add_op) return tf.group(*update_ops)
Example #10
Source File: memory.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def make_update_op(self, upd_idxs, upd_keys, upd_vals, batch_size, use_recent_idx, intended_output): """Function that creates all the update ops.""" base_update_op = super(LSHMemory, self).make_update_op( upd_idxs, upd_keys, upd_vals, batch_size, use_recent_idx, intended_output) # compute hash slots to be updated hash_slot_idxs = self.get_hash_slots(upd_keys) # make updates update_ops = [] with tf.control_dependencies([base_update_op]): for i, slot_idxs in enumerate(hash_slot_idxs): # for each slot, choose which entry to replace entry_idx = tf.random_uniform([batch_size], maxval=self.num_per_hash_slot, dtype=tf.int32) entry_mul = 1 - tf.one_hot(entry_idx, self.num_per_hash_slot, dtype=tf.int32) entry_add = (tf.expand_dims(upd_idxs, 1) * tf.one_hot(entry_idx, self.num_per_hash_slot, dtype=tf.int32)) mul_op = tf.scatter_mul(self.hash_slots[i], slot_idxs, entry_mul) with tf.control_dependencies([mul_op]): add_op = tf.scatter_add(self.hash_slots[i], slot_idxs, entry_add) update_ops.append(add_op) return tf.group(*update_ops)
Example #11
Source File: memory.py From models with Apache License 2.0 | 5 votes |
def make_update_op(self, upd_idxs, upd_keys, upd_vals, batch_size, use_recent_idx, intended_output): """Function that creates all the update ops.""" base_update_op = super(LSHMemory, self).make_update_op( upd_idxs, upd_keys, upd_vals, batch_size, use_recent_idx, intended_output) # compute hash slots to be updated hash_slot_idxs = self.get_hash_slots(upd_keys) # make updates update_ops = [] with tf.control_dependencies([base_update_op]): for i, slot_idxs in enumerate(hash_slot_idxs): # for each slot, choose which entry to replace entry_idx = tf.random_uniform([batch_size], maxval=self.num_per_hash_slot, dtype=tf.int32) entry_mul = 1 - tf.one_hot(entry_idx, self.num_per_hash_slot, dtype=tf.int32) entry_add = (tf.expand_dims(upd_idxs, 1) * tf.one_hot(entry_idx, self.num_per_hash_slot, dtype=tf.int32)) mul_op = tf.scatter_mul(self.hash_slots[i], slot_idxs, entry_mul) with tf.control_dependencies([mul_op]): add_op = tf.scatter_add(self.hash_slots[i], slot_idxs, entry_add) update_ops.append(add_op) return tf.group(*update_ops)
Example #12
Source File: memory.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def make_update_op(self, upd_idxs, upd_keys, upd_vals, batch_size, use_recent_idx, intended_output): """Function that creates all the update ops.""" base_update_op = super(LSHMemory, self).make_update_op( upd_idxs, upd_keys, upd_vals, batch_size, use_recent_idx, intended_output) # compute hash slots to be updated hash_slot_idxs = self.get_hash_slots(upd_keys) # make updates update_ops = [] with tf.control_dependencies([base_update_op]): for i, slot_idxs in enumerate(hash_slot_idxs): # for each slot, choose which entry to replace entry_idx = tf.random_uniform([batch_size], maxval=self.num_per_hash_slot, dtype=tf.int32) entry_mul = 1 - tf.one_hot(entry_idx, self.num_per_hash_slot, dtype=tf.int32) entry_add = (tf.expand_dims(upd_idxs, 1) * tf.one_hot(entry_idx, self.num_per_hash_slot, dtype=tf.int32)) mul_op = tf.scatter_mul(self.hash_slots[i], slot_idxs, entry_mul) with tf.control_dependencies([mul_op]): add_op = tf.scatter_add(self.hash_slots[i], slot_idxs, entry_add) update_ops.append(add_op) return tf.group(*update_ops)