Python tensorflow.space_to_batch_nd() Examples

The following are 12 code examples of tensorflow.space_to_batch_nd(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module tensorflow , or try the search function .
Example #1
Source File: spacetobatch_op_test.py    From deep_image_model with Apache License 2.0 6 votes vote down vote up
def _checkGrad(self, x, block_shape, paddings):
    block_shape = np.array(block_shape)
    paddings = np.array(paddings).reshape((len(block_shape), 2))
    with self.test_session():
      tf_x = tf.convert_to_tensor(x)
      tf_y = tf.space_to_batch_nd(tf_x, block_shape, paddings)
      epsilon = 1e-5
      ((x_jacob_t, x_jacob_n)) = tf.test.compute_gradient(
          tf_x,
          x.shape,
          tf_y,
          tf_y.get_shape().as_list(),
          x_init_value=x,
          delta=epsilon)

    self.assertAllClose(x_jacob_t, x_jacob_n, rtol=1e-2, atol=epsilon) 
Example #2
Source File: spacetobatch_op_test.py    From deep_image_model with Apache License 2.0 5 votes vote down vote up
def _testPad(self, inputs, block_shape, paddings, outputs):
    block_shape = np.array(block_shape)
    paddings = np.array(paddings).reshape((len(block_shape), 2))
    for use_gpu in [False, True]:
      with self.test_session(use_gpu=use_gpu):
        # outputs = space_to_batch(inputs)
        x_tf = tf.space_to_batch_nd(tf.to_float(inputs), block_shape, paddings)
        self.assertAllEqual(x_tf.eval(), outputs)
        # inputs = batch_to_space(outputs)
        x_tf = tf.batch_to_space_nd(tf.to_float(outputs), block_shape, paddings)
        self.assertAllEqual(x_tf.eval(), inputs) 
Example #3
Source File: spacetobatch_op_test.py    From deep_image_model with Apache License 2.0 5 votes vote down vote up
def _testStaticShape(self, input_shape, block_shape, paddings, error):
    block_shape = np.array(block_shape)
    paddings = np.array(paddings)

    # Try with sizes known at graph construction time.
    with self.assertRaises(error):
      _ = tf.space_to_batch_nd(
          np.zeros(input_shape, np.float32), block_shape, paddings) 
Example #4
Source File: spacetobatch_op_test.py    From deep_image_model with Apache License 2.0 5 votes vote down vote up
def _testDynamicShape(self, input_shape, block_shape, paddings):
    block_shape = np.array(block_shape)
    paddings = np.array(paddings)
    # Try with sizes unknown at graph construction time.
    input_placeholder = tf.placeholder(tf.float32)
    block_shape_placeholder = tf.placeholder(tf.int32, shape=block_shape.shape)
    paddings_placeholder = tf.placeholder(tf.int32)
    t = tf.space_to_batch_nd(input_placeholder, block_shape_placeholder,
                             paddings_placeholder)

    with self.assertRaises(ValueError):
      _ = t.eval({input_placeholder: np.zeros(input_shape, np.float32),
                  block_shape_placeholder: block_shape,
                  paddings_placeholder: paddings}) 
Example #5
Source File: spacetobatch_op_test.py    From deep_image_model with Apache License 2.0 5 votes vote down vote up
def testUnknown(self):
    # Verify that input shape and paddings shape can be unknown.
    _ = tf.space_to_batch_nd(
        tf.placeholder(tf.float32),
        tf.placeholder(tf.int32, shape=(2,)),
        tf.placeholder(tf.int32))

    # Only number of input dimensions is known.
    t = tf.space_to_batch_nd(
        tf.placeholder(tf.float32, shape=(None, None, None, None)),
        tf.placeholder(tf.int32, shape=(2,)),
        tf.placeholder(tf.int32))
    self.assertEqual(4, t.get_shape().ndims)

    # Dimensions are partially known.
    t = tf.space_to_batch_nd(
        tf.placeholder(tf.float32, shape=(None, None, None, 2)),
        tf.placeholder(tf.int32, shape=(2,)),
        tf.placeholder(tf.int32))
    self.assertEqual([None, None, None, 2], t.get_shape().as_list())

    # Dimensions are partially known.
    t = tf.space_to_batch_nd(
        tf.placeholder(tf.float32, shape=(3, None, None, 2)), [2, 3],
        tf.placeholder(tf.int32))
    self.assertEqual([3 * 2 * 3, None, None, 2], t.get_shape().as_list())

    # Dimensions are partially known.
    t = tf.space_to_batch_nd(
        tf.placeholder(tf.float32, shape=(3, None, 2, 2)), [2, 3],
        [[1, 1], [0, 1]])
    self.assertEqual([3 * 2 * 3, None, 1, 2], t.get_shape().as_list())

    # Dimensions are fully known.
    t = tf.space_to_batch_nd(
        tf.placeholder(tf.float32, shape=(3, 2, 3, 2)), [2, 3],
        [[1, 1], [0, 0]])
    self.assertEqual([3 * 2 * 3, 2, 1, 2], t.get_shape().as_list()) 
Example #6
Source File: ops_test.py    From tf-encrypted with Apache License 2.0 5 votes vote down vote up
def _generic_public_test(t, block_shape, paddings):
        with tf.Session() as sess:
            out = tf.space_to_batch_nd(t, block_shape=block_shape, paddings=paddings)
            actual = sess.run(out)

        with tfe.protocol.Pond() as prot:
            b = prot.define_public_variable(t)
            out = prot.space_to_batch_nd(b, block_shape=block_shape, paddings=paddings)
            with tfe.Session() as sess:
                sess.run(tf.global_variables_initializer())
                final = sess.run(out)

        np.testing.assert_array_almost_equal(final, actual, decimal=3) 
Example #7
Source File: ops_test.py    From tf-encrypted with Apache License 2.0 5 votes vote down vote up
def _generic_private_test(t, block_shape, paddings):
        with tf.Session() as sess:
            out = tf.space_to_batch_nd(t, block_shape=block_shape, paddings=paddings)
            actual = sess.run(out)

        with tfe.protocol.Pond() as prot:
            b = prot.define_private_variable(t)
            out = prot.space_to_batch_nd(b, block_shape=block_shape, paddings=paddings)
            with tfe.Session() as sess:
                sess.run(tf.global_variables_initializer())
                final = sess.run(out.reveal())

        np.testing.assert_array_almost_equal(final, actual, decimal=3) 
Example #8
Source File: ops_test.py    From tf-encrypted with Apache License 2.0 5 votes vote down vote up
def _generic_masked_test(t, block_shape, paddings):
        with tf.Session() as sess:
            out = tf.space_to_batch_nd(t, block_shape=block_shape, paddings=paddings)
            actual = sess.run(out)

        with tfe.protocol.Pond() as prot:
            b = prot.mask(prot.define_private_variable(t))
            out = prot.space_to_batch_nd(b, block_shape=block_shape, paddings=paddings)
            with tfe.Session() as sess:
                sess.run(tf.global_variables_initializer())
                final = sess.run(out.reveal())

        np.testing.assert_array_almost_equal(final, actual, decimal=3) 
Example #9
Source File: convert_test.py    From tf-encrypted with Apache License 2.0 5 votes vote down vote up
def test_space_to_batch_nd_convert(self):
        test_input = np.ones([2, 2, 4, 1])
        self._test_with_ndarray_input_fn(
            "space_to_batch_nd", test_input, protocol="Pond"
        ) 
Example #10
Source File: convert_test.py    From tf-encrypted with Apache License 2.0 5 votes vote down vote up
def _construct_space_to_batch_nd(input_shape):
    a = tf.placeholder(tf.float32, shape=input_shape, name="input")
    block_shape = tf.constant([2, 2], dtype=tf.int32)
    paddings = tf.constant([[0, 0], [2, 0]], dtype=tf.int32)
    x = tf.space_to_batch_nd(a, block_shape=block_shape, paddings=paddings)
    return x, a 
Example #11
Source File: test_forward.py    From incubator-tvm with Apache License 2.0 5 votes vote down vote up
def _test_space_to_batch_nd(input_shape, block_shape, paddings, dtype='int32'):
    data = np.random.uniform(0, 5, size=input_shape).astype(dtype)

    with tf.Graph().as_default():
        in_data = tf.placeholder(shape=input_shape, dtype=dtype)
        out = tf.space_to_batch_nd(in_data, block_shape, paddings)

        compare_tf_with_tvm(data, in_data.name, out.name) 
Example #12
Source File: test_forward.py    From incubator-tvm with Apache License 2.0 5 votes vote down vote up
def _test_space_to_batch_nd_infer_paddings(input_shape, block_shape, dtype='int32'):
    data = np.random.uniform(0, 5, size=input_shape).astype(dtype)
    padding_np = np.array([0, 1]).astype(np.int32).reshape((1, 2))
    with tf.Graph().as_default():
        in_data = tf.placeholder(shape=input_shape, dtype=dtype)
        const1 = tf.constant(padding_np, dtype=tf.int32)
        # make paddings an input to tf.transpose, but not an input to the graph,
        # so it can be extracted with infer_value_simulated
        paddings = tf.reverse(const1, axis=[-1])
        out = tf.space_to_batch_nd(in_data, block_shape, paddings)
        compare_tf_with_tvm(data, in_data.name, out.name)