Python tensorflow.Op() Examples
The following are 9
code examples of tensorflow.Op().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: nn.py From hart with GNU General Public License v3.0 | 6 votes |
def __init__(self, inpt, n_hidden, n_output, transfer_hidden=tf.nn.elu, transfer=None, hidden_weight_init=None, hidden_bias_init=None,weight_init=None, bias_init=None, name=None): """ :param inpt: inpt tensor :param n_hidden: scalar ot list, number of hidden units :param n_output: scalar, number of output units :param transfer_hidden: scalar or list, transfers for hidden units. If list, len must be == len(n_hidden). :param transfer: tf.Op or None """ self.n_hidden = nest.flatten(n_hidden) self.n_output = n_output self.hidden_weight_init = hidden_weight_init self.hidden_bias_init = hidden_bias_init transfer_hidden = nest.flatten(transfer_hidden) if len(transfer_hidden) == 1: transfer_hidden *= len(self.n_hidden) self.transfer_hidden = transfer_hidden self.transfer = transfer super(MLP, self).__init__(inpt, name, weight_init, bias_init)
Example #2
Source File: bdqn.py From rltf with MIT License | 6 votes |
def __init__(self, sigma_e, tau, mode="mean", **kwargs): """ Args: obs_shape: list. Shape of the observation tensor n_actions: int. Number of possible actions opt_conf: rltf.optimizers.OptimizerConf. Configuration for the optimizer gamma: float. Discount factor sigma_e: float. Standard deviation of the noise observation for BLR tau: float. Standard deviation for the weight prior in BLR huber_loss: bool. Whether to use huber loss or not """ super().__init__(**kwargs) self.agent_blr = [BLR(tau=tau, sigma_e=sigma_e, mode=mode) for _ in range(self.n_actions)] self.target_blr = [BLR(tau=tau, sigma_e=sigma_e, mode="mean") for _ in range(self.n_actions)] # Custom TF Tensors and Ops self._target = None # BLR target self._phi = None # BLR features self.train_blr = None # Op for updating the BLR weight posterior self.reset_blr = None # Op for reseting the BLR to initial weights self.a_var = None # Tensor with BLR var
Example #3
Source File: bdqn.py From rltf with MIT License | 6 votes |
def _build_train_blr_op(self, phi, target, name): """Build the Bayesian Linear Regression ops and estimates Args: phi: tf.Tensor, shape: `[None, dim_phi]`. The feature tensor target: tf.Tensor, as returned by `self._compute_target()`; `[None]` Returns: tf.Op: The train Op for BLR """ target = tf.expand_dims(target, axis=-1) def train_blr(blr, a): """Given a BLR instance, select only the examples for the corresponding action""" mask = tf.expand_dims(tf.equal(self.act_t_ph, a), axis=-1) mask = tf.cast(mask, tf.float32) # out shape: [None] X = phi * mask # out shape: [None, dim_phi] y = target * mask # out shape: [None, 1] return blr.train(X, y) w_updates = [train_blr(blr, i) for i, blr in enumerate(self.agent_blr)] return tf.group(*w_updates, name=name)
Example #4
Source File: blr.py From rltf with MIT License | 6 votes |
def train(self, X, y): """Compute the weight posteriror of Bayesian Linear Regression Args: X: tf.Tensor, `shape=[None, D]`. The feature matrix y: tf.Tensor, `shape=[None, 1]`. The correct outputs Returns: tf.Op which performs the update operation """ X = self._cast_input(X) y = self._cast_input(y) # Compute the posterior precision matrix w_Lambda = self.w_Lambda + self.beta * tf.matmul(X, X, transpose_a=True) # Compute the posterior covariance matrix X_norm = 1.0 / self.sigma * X w_Sigma = tf_inv.woodburry_inverse(self.w_Sigma, tf.transpose(X_norm), X_norm) error = tf.losses.mean_squared_error(tf.matmul(w_Lambda, w_Sigma), tf.eye(self.w_dim)) tf.summary.scalar("debug/BLR/inv_error", error) # Compute the posterior mean w_mu = tf.matmul(w_Sigma, self.beta * tf.matmul(X, y, True) + tf.matmul(self.w_Lambda, self.w_mu)) return self._tf_update_params(w_mu, w_Sigma, w_Lambda)
Example #5
Source File: prior.py From attend_infer_repeat with GNU General Public License v3.0 | 6 votes |
def masked_apply(tensor, op, mask): """Applies `op` to tensor only at locations indicated by `mask` and sets the rest to zero. Similar to doing `tensor = tf.where(mask, op(tensor), tf.zeros_like(tensor))` but it behaves correctly when `op(tensor)` is NaN or inf while tf.where does not. :param tensor: tf.Tensor :param op: tf.Op :param mask: tf.Tensor with dtype == bool :return: tf.Tensor """ chosen = tf.boolean_mask(tensor, mask) applied = op(chosen) idx = tf.to_int32(tf.where(mask)) result = tf.scatter_nd(idx, applied, tf.shape(tensor)) return result
Example #6
Source File: utils.py From Deep-Learning-with-TensorFlow-Second-Edition with MIT License | 5 votes |
def sigmoid(x): return 1 / (1 + np.exp(-x)) # Predefined loss functions # Should take 2 tf.Ops: outputs and targets and should return tf.Op of loss # Be carefull about dimentionality -- maybe tf.transpose(outputs) is needed
Example #7
Source File: trainer.py From FRU with MIT License | 5 votes |
def evaluate(session, op_to_evaluate, feed_dict, batch_size): """ evaluate. Evaluate an operation with provided data dict using a batch size to save GPU memory. Args: session: `tf.Session`. Session for running operations. op_to_evaluate: `tf.Op`. Operation to be evaluated. feed_dict: `dict`. Data dictionary to feed op_to_evaluate. batch_size: `int`. Batch size to be used for evaluation. Ret: `float`. op_to_evaluate mean over all batches. """ tflearn.is_training(False, session) n_test_samples = len(get_dict_first_element(feed_dict)) batches = make_batches(n_test_samples, batch_size) index_array = np.arange(n_test_samples) avg = 0.0 for i, (batch_start, batch_end) in enumerate(batches): batch_ids = index_array[batch_start:batch_end] feed_batch = {} for key in feed_dict: # Make batch for multi-dimensional data if np.ndim(feed_dict[key]) > 0: feed_batch[key] = slice_array(feed_dict[key], batch_ids) else: feed_batch[key] = feed_dict[key] avg += session.run(op_to_evaluate, feed_batch) / len(batches) return avg
Example #8
Source File: bdqn.py From rltf with MIT License | 5 votes |
def __init__(self, **kwargs): super().__init__(mode="ts", **kwargs) # Custom TF Tensors and Ops self.reset_ts = None # Op that resamples the parameters for TS
Example #9
Source File: blr.py From rltf with MIT License | 5 votes |
def _tf_update_params(self, w_mu, w_Sigma, w_Lambda): """ Returns: tf.Op which performs an update on all weight parameters """ mu_op = tf.assign(self.w_mu, w_mu) Sigma_op = tf.assign(self.w_Sigma, w_Sigma) Lambda_op = tf.assign(self.w_Lambda, w_Lambda) return tf.group(mu_op, Sigma_op, Lambda_op)