Python tensorflow.segment_mean() Examples
The following are 6
code examples of tensorflow.segment_mean().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: segment_reduction_ops_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testGradient(self): shape = [4, 4] indices = [0, 1, 2, 2] for tf_op in [tf.segment_sum, tf.segment_mean, tf.segment_min, tf.segment_max]: with self.test_session(): tf_x, np_x = self._input(shape, dtype=tf.float64) s = tf_op(data=tf_x, segment_ids=indices) jacob_t, jacob_n = tf.test.compute_gradient( tf_x, shape, s, [3, 4], x_init_value=np_x.astype(np.double), delta=1) self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3)
Example #2
Source File: net_utils.py From scene-graph-TF-release with MIT License | 6 votes |
def padded_segment_reduce(vecs, segment_inds, num_segments, reduction_mode): """ Reduce the vecs with segment_inds and reduction_mode Input: vecs: A Tensor of shape (batch_size, vec_dim) segment_inds: A Tensor containing the segment index of each vec row, should agree with vecs in shape[0] Output: A tensor of shape (vec_dim) """ if reduction_mode == 'max': print('USING MAX POOLING FOR REDUCTION!') vecs_reduced = tf.segment_max(vecs, segment_inds) elif reduction_mode == 'mean': print('USING AVG POOLING FOR REDUCTION!') vecs_reduced = tf.segment_mean(vecs, segment_inds) vecs_reduced.set_shape([num_segments, vecs.get_shape()[1]]) return vecs_reduced
Example #3
Source File: ops.py From tfdeploy with MIT License | 5 votes |
def test_SegmentMean(self): t = tf.segment_mean(self.random(4, 2, 3), np.array([0, 1, 1, 2])) self.check(t)
Example #4
Source File: segment_reduction_ops_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testValues(self): dtypes = [tf.float32, tf.float64, tf.int64, tf.int32, tf.complex64, tf.complex128] # Each item is np_op1, np_op2, tf_op ops_list = [(np.add, None, tf.segment_sum), (self._mean_cum_op, self._mean_reduce_op, tf.segment_mean), (np.ndarray.__mul__, None, tf.segment_prod), (np.minimum, None, tf.segment_min), (np.maximum, None, tf.segment_max)] # A subset of ops has been enabled for complex numbers complex_ops_list = [(np.add, None, tf.segment_sum), (np.ndarray.__mul__, None, tf.segment_prod)] n = 10 shape = [n, 2] indices = [i // 3 for i in range(n)] for dtype in dtypes: if dtype in (tf.complex64, tf.complex128): curr_ops_list = complex_ops_list else: curr_ops_list = ops_list with self.test_session(use_gpu=False): tf_x, np_x = self._input(shape, dtype=dtype) for np_op1, np_op2, tf_op in curr_ops_list: np_ans = self._segmentReduce(indices, np_x, np_op1, np_op2) s = tf_op(data=tf_x, segment_ids=indices) tf_ans = s.eval() self._assertAllClose(indices, np_ans, tf_ans) # NOTE(mrry): The static shape inference that computes # `tf_ans.shape` can only infer that sizes from dimension 1 # onwards, because the size of dimension 0 is data-dependent # and may therefore vary dynamically. self.assertAllEqual(np_ans.shape[1:], tf_ans.shape[1:])
Example #5
Source File: pooling.py From SchNet with MIT License | 5 votes |
def __init__(self, mode='sum', name=None): if mode == 'sum': self._reduce = tf.segment_sum elif mode == 'mean': self._reduce = tf.segment_mean super(PoolSegments, self).__init__(name)
Example #6
Source File: segments.py From moonlight with Apache License 2.0 | 4 votes |
def _segments_1d(values, mode, name=None): """Labels consecutive runs of the same value. Args: values: 1D tensor of any type. mode: The SegmentsMode. Returns the start of each segment (STARTS), or the rounded center of each segment (CENTERS). name: Optional name for the op. Returns: run_centers: int32 tensor; the centers of each run with the same consecutive values. run_lengths: int32 tensor; the lengths of each run. Raises: ValueError: if mode is not recognized. """ with tf.name_scope(name, "segments", [values]): def do_segments(values): """Actually does segmentation. Args: values: 1D tensor of any type. Non-empty. Returns: run_centers: int32 tensor run_lengths: int32 tensor Raises: ValueError: if mode is not recognized. """ length = tf.shape(values)[0] values = tf.convert_to_tensor(values) # The first run has id 0, so we don't increment the id. # Otherwise, the id is incremented when the value changes. run_start_bool = tf.concat( [[False], tf.not_equal(values[1:], values[:-1])], axis=0) # Cumulative sum the run starts to get the run ids. segment_ids = tf.cumsum(tf.cast(run_start_bool, tf.int32)) if mode is SegmentsMode.STARTS: run_centers = tf.segment_min(tf.range(length), segment_ids) elif mode is SegmentsMode.CENTERS: run_centers = tf.segment_mean( tf.cast(tf.range(length), tf.float32), segment_ids) run_centers = tf.cast(tf.floor(run_centers), tf.int32) else: raise ValueError("Unexpected mode: %s" % mode) run_lengths = tf.segment_sum(tf.ones([length], tf.int32), segment_ids) return run_centers, run_lengths def empty_segments(): return (tf.zeros([0], tf.int32), tf.zeros([0], tf.int32)) return tf.cond( tf.greater(tf.shape(values)[0], 0), lambda: do_segments(values), empty_segments)