Python tensorflow.relu() Examples
The following are 30
code examples of tensorflow.relu().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: common_layers.py From BERT with Apache License 2.0 | 6 votes |
def double_discriminator(x, filters1=128, filters2=None, kernel_size=8, strides=4, pure_mean=False): """A convolutional discriminator with 2 layers and concatenated output.""" if filters2 is None: filters2 = 4 * filters1 with tf.variable_scope("discriminator"): batch_size = shape_list(x)[0] net = layers().Conv2D( filters1, kernel_size, strides=strides, padding="SAME", name="conv1")(x) if pure_mean: net1 = tf.reduce_mean(net, [1, 2]) else: net1 = mean_with_attention(net, "mean_with_attention1") tf.reshape(net, [batch_size, -1]) net = tf.nn.relu(net) net = layers().Conv2D( filters2, kernel_size, strides=strides, padding="SAME", name="conv2")(x) if pure_mean: net2 = tf.reduce_mean(net, [1, 2]) else: net2 = mean_with_attention(net, "mean_with_attention2") return tf.concat([net1, net2], axis=-1)
Example #2
Source File: common_layers.py From training_results_v0.5 with Apache License 2.0 | 6 votes |
def double_discriminator(x, filters1=128, filters2=None, kernel_size=8, strides=4, pure_mean=False): """A convolutional discriminator with 2 layers and concatenated output.""" if filters2 is None: filters2 = 4 * filters1 with tf.variable_scope("discriminator"): batch_size = shape_list(x)[0] net = tf.layers.conv2d( x, filters1, kernel_size, strides=strides, padding="SAME", name="conv1") if pure_mean: net1 = tf.reduce_mean(net, [1, 2]) else: net1 = mean_with_attention(net, "mean_with_attention1") tf.reshape(net, [batch_size, -1]) net = tf.nn.relu(net) net = tf.layers.conv2d( x, filters2, kernel_size, strides=strides, padding="SAME", name="conv2") if pure_mean: net2 = tf.reduce_mean(net, [1, 2]) else: net2 = mean_with_attention(net, "mean_with_attention2") return tf.concat([net1, net2], axis=-1)
Example #3
Source File: common_layers.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def brelu(x): """Bipolar ReLU as in https://arxiv.org/abs/1709.04054.""" x_shape = shape_list(x) x1, x2 = tf.split(tf.reshape(x, x_shape[:-1] + [-1, 2]), 2, axis=-1) y1 = tf.nn.relu(x1) y2 = -tf.nn.relu(-x2) return tf.reshape(tf.concat([y1, y2], axis=-1), x_shape)
Example #4
Source File: kafnets.py From kernel-activation-functions with MIT License | 5 votes |
def __init__(self, num_parameters, D=20, boundary=3.0, conv=False, init_fcn=None, kernel='gaussian', **kwargs): self.num_parameters = num_parameters self.D = D self.boundary = boundary self.init_fcn = init_fcn self.conv = conv if self.conv: self.unsqueeze_dim = 4 else: self.unsqueeze_dim = 2 self.kernel = kernel if not (kernel in ['gaussian', 'relu', 'softplus']): raise ValueError('Kernel not recognized (must be {gaussian, relu, softplus})') super().__init__(**kwargs)
Example #5
Source File: common_layers.py From fine-lm with MIT License | 5 votes |
def hard_sigmoid(x, saturation_limit=0.9): saturation_cost = tf.reduce_mean(tf.nn.relu(tf.abs(x) - saturation_limit)) x_shifted = 0.5 * x + 0.5 return tf.minimum(1.0, tf.nn.relu(x_shifted)), saturation_cost
Example #6
Source File: common_layers.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def hard_sigmoid(x, saturation_limit=0.9): saturation_cost = tf.reduce_mean(tf.nn.relu(tf.abs(x) - saturation_limit)) x_shifted = 0.5 * x + 0.5 return tf.minimum(1.0, tf.nn.relu(x_shifted)), saturation_cost
Example #7
Source File: common_layers.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def hard_tanh(x, saturation_limit=0.9): saturation_cost = tf.reduce_mean(tf.nn.relu(tf.abs(x) - saturation_limit)) return tf.minimum(1.0, tf.maximum(x, -1.0)), saturation_cost
Example #8
Source File: common_layers.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def conv_stride2_multistep(x, nbr_steps, output_filters, name=None, reuse=None): """Use a strided convolution to downsample x by 2, `nbr_steps` times. We use stride and filter size 2 to avoid the checkerboard problem of deconvs. As detailed in http://distill.pub/2016/deconv-checkerboard/. Args: x: a `Tensor` with shape `[batch, spatial, depth]` or `[batch, spatial_1, spatial_2, depth]` nbr_steps: number of halving downsample rounds to apply output_filters: an int specifying the filter count for the convolutions name: a string reuse: a boolean Returns: a `Tensor` with shape `[batch, spatial / (2**nbr_steps), output_filters]` or `[batch, spatial_1 / (2**nbr_steps), spatial_2 / (2**nbr_steps), output_filters]` """ with tf.variable_scope( name, default_name="conv_stride2_multistep", values=[x], reuse=reuse): if nbr_steps == 0: out = conv(x, output_filters, (1, 1)) return out, [out] hidden_layers = [x] for i in range(nbr_steps): hidden_layers.append( conv( hidden_layers[-1], output_filters, (2, 2), strides=2, activation=tf.nn.relu, name="conv" + str(i))) return hidden_layers[-1], hidden_layers
Example #9
Source File: common_layers.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def relu_density_logit(x, reduce_dims): """logit(density(x)). Useful for histograms. Args: x: a Tensor, typically the output of tf.relu reduce_dims: a list of dimensions Returns: a Tensor """ frac = tf.reduce_mean(tf.to_float(x > 0.0), reduce_dims) scaled = tf.log(frac + math.exp(-10)) - tf.log((1.0 - frac) + math.exp(-10)) return scaled
Example #10
Source File: common_layers.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def sepconv_relu_sepconv(inputs, filter_size, output_size, first_kernel_size=(1, 1), second_kernel_size=(1, 1), padding="LEFT", nonpadding_mask=None, dropout=0.0, name=None): """Hidden layer with RELU activation followed by linear projection.""" with tf.variable_scope(name, "sepconv_relu_sepconv", [inputs]): inputs = maybe_zero_out_padding(inputs, first_kernel_size, nonpadding_mask) if inputs.get_shape().ndims == 3: is_3d = True inputs = tf.expand_dims(inputs, 2) else: is_3d = False h = separable_conv( inputs, filter_size, first_kernel_size, activation=tf.nn.relu, padding=padding, name="conv1") if dropout != 0.0: h = tf.nn.dropout(h, 1.0 - dropout) h = maybe_zero_out_padding(h, second_kernel_size, nonpadding_mask) ret = separable_conv( h, output_size, second_kernel_size, padding=padding, name="conv2") if is_3d: ret = tf.squeeze(ret, 2) return ret # DEPRECATED - use dense_relu_dense, conv_relu_conv, sepconv_relu_sepconv
Example #11
Source File: common_layers.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def conv_hidden_relu(inputs, hidden_size, output_size, kernel_size=(1, 1), second_kernel_size=(1, 1), dropout=0.0, **kwargs): """Hidden layer with RELU activation followed by linear projection.""" name = kwargs.pop("name") if "name" in kwargs else None with tf.variable_scope(name, "conv_hidden_relu", [inputs]): if inputs.get_shape().ndims == 3: is_3d = True inputs = tf.expand_dims(inputs, 2) else: is_3d = False conv_f1 = conv if kernel_size == (1, 1) else separable_conv h = conv_f1( inputs, hidden_size, kernel_size, activation=tf.nn.relu, name="conv1", **kwargs) if dropout != 0.0: h = tf.nn.dropout(h, 1.0 - dropout) conv_f2 = conv if second_kernel_size == (1, 1) else separable_conv ret = conv_f2(h, output_size, second_kernel_size, name="conv2", **kwargs) if is_3d: ret = tf.squeeze(ret, 2) return ret
Example #12
Source File: kafnets.py From kernel-activation-functions with MIT License | 5 votes |
def relu_kernel(self, x): return tf.relu(tf.expand_dims(x, axis=self.unsqueeze_dim) - self.dict)
Example #13
Source File: common_layers.py From NMT_GAN with Apache License 2.0 | 5 votes |
def hard_sigmoid(x, saturation_limit=0.9): saturation_cost = tf.reduce_mean(tf.nn.relu(tf.abs(x) - saturation_limit)) x_shifted = 0.5 * x + 0.5 return tf.minimum(1.0, tf.nn.relu(x_shifted)), saturation_cost
Example #14
Source File: common_layers.py From NMT_GAN with Apache License 2.0 | 5 votes |
def hard_tanh(x, saturation_limit=0.9): saturation_cost = tf.reduce_mean(tf.nn.relu(tf.abs(x) - saturation_limit)) return tf.minimum(1.0, tf.maximum(x, -1.0)), saturation_cost
Example #15
Source File: common_layers.py From NMT_GAN with Apache License 2.0 | 5 votes |
def conv_stride2_multistep(x, nbr_steps, output_filters, name=None, reuse=None): """Use a strided convolution to downsample x by 2, `nbr_steps` times. We use stride and filter size 2 to avoid the checkerboard problem of deconvs. As detailed in http://distill.pub/2016/deconv-checkerboard/. Args: x: a `Tensor` with shape `[batch, spatial, depth]` or `[batch, spatial_1, spatial_2, depth]` nbr_steps: number of halving downsample rounds to apply output_filters: an int specifying the filter count for the convolutions name: a string reuse: a boolean Returns: a `Tensor` with shape `[batch, spatial / (2**nbr_steps), output_filters]` or `[batch, spatial_1 / (2**nbr_steps), spatial_2 / (2**nbr_steps), output_filters]` """ with tf.variable_scope( name, default_name="conv_stride2_multistep", values=[x], reuse=reuse): if nbr_steps == 0: out = conv(x, output_filters, (1, 1)) return out, [out] hidden_layers = [x] for i in xrange(nbr_steps): hidden_layers.append( conv( hidden_layers[-1], output_filters, (2, 2), strides=2, activation=tf.nn.relu, name="conv" + str(i))) return hidden_layers[-1], hidden_layers
Example #16
Source File: common_layers.py From NMT_GAN with Apache License 2.0 | 5 votes |
def conv_hidden_relu(inputs, hidden_size, output_size, kernel_size=(1, 1), summaries=True, dropout=0.0, **kwargs): """Hidden layer with RELU activation followed by linear projection.""" name = kwargs.pop("name") if "name" in kwargs else None with tf.variable_scope(name, "conv_hidden_relu", [inputs]): if inputs.get_shape().ndims == 3: is_3d = True inputs = tf.expand_dims(inputs, 2) else: is_3d = False h = conv( inputs, hidden_size, kernel_size, activation=tf.nn.relu, name="conv1", **kwargs) if dropout != 0.0: h = tf.nn.dropout(h, 1.0 - dropout) if summaries and not tf.get_variable_scope().reuse: tf.summary.histogram("hidden_density_logit", relu_density_logit( h, list(range(inputs.shape.ndims - 1)))) ret = conv(h, output_size, (1, 1), name="conv2", **kwargs) if is_3d: ret = tf.squeeze(ret, 2) return ret
Example #17
Source File: common_layers.py From ASR with Apache License 2.0 | 5 votes |
def hard_sigmoid(x, saturation_limit=0.9): saturation_cost = tf.reduce_mean(tf.nn.relu(tf.abs(x) - saturation_limit)) x_shifted = 0.5 * x + 0.5 return tf.minimum(1.0, tf.nn.relu(x_shifted)), saturation_cost
Example #18
Source File: common_layers.py From ASR with Apache License 2.0 | 5 votes |
def hard_tanh(x, saturation_limit=0.9): saturation_cost = tf.reduce_mean(tf.nn.relu(tf.abs(x) - saturation_limit)) return tf.minimum(1.0, tf.maximum(x, -1.0)), saturation_cost
Example #19
Source File: common_layers.py From ASR with Apache License 2.0 | 5 votes |
def conv_stride2_multistep(x, nbr_steps, output_filters, name=None, reuse=None): """Use a strided convolution to downsample x by 2, `nbr_steps` times. We use stride and filter size 2 to avoid the checkerboard problem of deconvs. As detailed in http://distill.pub/2016/deconv-checkerboard/. Args: x: a `Tensor` with shape `[batch, spatial, depth]` or `[batch, spatial_1, spatial_2, depth]` nbr_steps: number of halving downsample rounds to apply output_filters: an int specifying the filter count for the convolutions name: a string reuse: a boolean Returns: a `Tensor` with shape `[batch, spatial / (2**nbr_steps), output_filters]` or `[batch, spatial_1 / (2**nbr_steps), spatial_2 / (2**nbr_steps), output_filters]` """ with tf.variable_scope( name, default_name="conv_stride2_multistep", values=[x], reuse=reuse): if nbr_steps == 0: out = conv(x, output_filters, (1, 1)) return out, [out] hidden_layers = [x] for i in xrange(nbr_steps): hidden_layers.append( conv( hidden_layers[-1], output_filters, (2, 2), strides=2, activation=tf.nn.relu, name="conv" + str(i))) return hidden_layers[-1], hidden_layers
Example #20
Source File: common_layers.py From ASR with Apache License 2.0 | 5 votes |
def conv_hidden_relu(inputs, hidden_size, output_size, kernel_size=(1, 1), summaries=True, dropout=0.0, **kwargs): """Hidden layer with RELU activation followed by linear projection.""" name = kwargs.pop("name") if "name" in kwargs else None with tf.variable_scope(name, "conv_hidden_relu", [inputs]): if inputs.get_shape().ndims == 3: is_3d = True inputs = tf.expand_dims(inputs, 2) else: is_3d = False h = conv( inputs, hidden_size, kernel_size, activation=tf.nn.relu, name="conv1", **kwargs) if dropout != 0.0: h = tf.nn.dropout(h, 1.0 - dropout) if summaries and not tf.get_variable_scope().reuse: tf.summary.histogram("hidden_density_logit", relu_density_logit( h, list(range(inputs.shape.ndims - 1)))) ret = conv(h, output_size, (1, 1), name="conv2", **kwargs) if is_3d: ret = tf.squeeze(ret, 2) return ret
Example #21
Source File: common_layers.py From BERT with Apache License 2.0 | 5 votes |
def hard_sigmoid(x, saturation_limit=0.9): saturation_cost = tf.reduce_mean(tf.nn.relu(tf.abs(x) - saturation_limit)) x_shifted = 0.5 * x + 0.5 return tf.minimum(1.0, tf.nn.relu(x_shifted)), saturation_cost
Example #22
Source File: common_layers.py From fine-lm with MIT License | 5 votes |
def hard_tanh(x, saturation_limit=0.9): saturation_cost = tf.reduce_mean(tf.nn.relu(tf.abs(x) - saturation_limit)) return tf.minimum(1.0, tf.maximum(x, -1.0)), saturation_cost
Example #23
Source File: common_layers.py From fine-lm with MIT License | 5 votes |
def conv_stride2_multistep(x, nbr_steps, output_filters, name=None, reuse=None): """Use a strided convolution to downsample x by 2, `nbr_steps` times. We use stride and filter size 2 to avoid the checkerboard problem of deconvs. As detailed in http://distill.pub/2016/deconv-checkerboard/. Args: x: a `Tensor` with shape `[batch, spatial, depth]` or `[batch, spatial_1, spatial_2, depth]` nbr_steps: number of halving downsample rounds to apply output_filters: an int specifying the filter count for the convolutions name: a string reuse: a boolean Returns: a `Tensor` with shape `[batch, spatial / (2**nbr_steps), output_filters]` or `[batch, spatial_1 / (2**nbr_steps), spatial_2 / (2**nbr_steps), output_filters]` """ with tf.variable_scope( name, default_name="conv_stride2_multistep", values=[x], reuse=reuse): if nbr_steps == 0: out = conv(x, output_filters, (1, 1)) return out, [out] hidden_layers = [x] for i in range(nbr_steps): hidden_layers.append( conv( hidden_layers[-1], output_filters, (2, 2), strides=2, activation=tf.nn.relu, name="conv" + str(i))) return hidden_layers[-1], hidden_layers
Example #24
Source File: common_layers.py From fine-lm with MIT License | 5 votes |
def relu_density_logit(x, reduce_dims): """logit(density(x)). Useful for histograms. Args: x: a Tensor, typically the output of tf.relu reduce_dims: a list of dimensions Returns: a Tensor """ frac = tf.reduce_mean(tf.to_float(x > 0.0), reduce_dims) scaled = tf.log(frac + math.exp(-10)) - tf.log((1.0 - frac) + math.exp(-10)) return scaled
Example #25
Source File: common_layers.py From fine-lm with MIT License | 5 votes |
def sepconv_relu_sepconv(inputs, filter_size, output_size, first_kernel_size=(1, 1), second_kernel_size=(1, 1), padding="LEFT", nonpadding_mask=None, dropout=0.0, name=None): """Hidden layer with RELU activation followed by linear projection.""" with tf.variable_scope(name, "sepconv_relu_sepconv", [inputs]): inputs = maybe_zero_out_padding(inputs, first_kernel_size, nonpadding_mask) if inputs.get_shape().ndims == 3: is_3d = True inputs = tf.expand_dims(inputs, 2) else: is_3d = False h = separable_conv( inputs, filter_size, first_kernel_size, activation=tf.nn.relu, padding=padding, name="conv1") if dropout != 0.0: h = tf.nn.dropout(h, 1.0 - dropout) h = maybe_zero_out_padding(h, second_kernel_size, nonpadding_mask) ret = separable_conv( h, output_size, second_kernel_size, padding=padding, name="conv2") if is_3d: ret = tf.squeeze(ret, 2) return ret # DEPRECATED - use dense_relu_dense, conv_relu_conv, sepconv_relu_sepconv
Example #26
Source File: common_layers.py From fine-lm with MIT License | 5 votes |
def conv_hidden_relu(inputs, hidden_size, output_size, kernel_size=(1, 1), second_kernel_size=(1, 1), dropout=0.0, **kwargs): """Hidden layer with RELU activation followed by linear projection.""" name = kwargs.pop("name") if "name" in kwargs else None with tf.variable_scope(name, "conv_hidden_relu", [inputs]): if inputs.get_shape().ndims == 3: is_3d = True inputs = tf.expand_dims(inputs, 2) else: is_3d = False conv_f1 = conv if kernel_size == (1, 1) else separable_conv h = conv_f1( inputs, hidden_size, kernel_size, activation=tf.nn.relu, name="conv1", **kwargs) if dropout != 0.0: h = tf.nn.dropout(h, 1.0 - dropout) conv_f2 = conv if second_kernel_size == (1, 1) else separable_conv ret = conv_f2(h, output_size, second_kernel_size, name="conv2", **kwargs) if is_3d: ret = tf.squeeze(ret, 2) return ret
Example #27
Source File: common_layers.py From fine-lm with MIT License | 5 votes |
def brelu(x): """Bipolar ReLU as in https://arxiv.org/abs/1709.04054.""" x_shape = shape_list(x) x1, x2 = tf.split(tf.reshape(x, x_shape[:-1] + [-1, 2]), 2, axis=-1) y1 = tf.nn.relu(x1) y2 = -tf.nn.relu(-x2) return tf.reshape(tf.concat([y1, y2], axis=-1), x_shape)
Example #28
Source File: common_layers.py From BERT with Apache License 2.0 | 5 votes |
def brelu(x): """Bipolar ReLU as in https://arxiv.org/abs/1709.04054.""" x_shape = shape_list(x) x1, x2 = tf.split(tf.reshape(x, x_shape[:-1] + [-1, 2]), 2, axis=-1) y1 = tf.nn.relu(x1) y2 = -tf.nn.relu(-x2) return tf.reshape(tf.concat([y1, y2], axis=-1), x_shape)
Example #29
Source File: common_layers.py From BERT with Apache License 2.0 | 5 votes |
def hard_tanh(x, saturation_limit=0.9): saturation_cost = tf.reduce_mean(tf.nn.relu(tf.abs(x) - saturation_limit)) return tf.minimum(1.0, tf.maximum(x, -1.0)), saturation_cost
Example #30
Source File: common_layers.py From BERT with Apache License 2.0 | 5 votes |
def relu_density_logit(x, reduce_dims): """logit(density(x)). Useful for histograms. Args: x: a Tensor, typically the output of tf.relu reduce_dims: a list of dimensions Returns: a Tensor """ frac = tf.reduce_mean(to_float(x > 0.0), reduce_dims) scaled = tf.log(frac + math.exp(-10)) - tf.log((1.0 - frac) + math.exp(-10)) return scaled