Python tensorflow.Identity() Examples
The following are 7
code examples of tensorflow.Identity().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: hyperparams_builder.py From vehicle_counting_tensorflow with MIT License | 5 votes |
def build_batch_norm(self, training=None, **overrides): """Returns a Batch Normalization layer with the appropriate hyperparams. If the hyperparams are configured to not use batch normalization, this will return a Keras Lambda layer that only applies tf.Identity, without doing any normalization. Optionally overrides values in the batch_norm hyperparam dict. Overrides only apply to individual calls of this method, and do not affect future calls. Args: training: if True, the normalization layer will normalize using the batch statistics. If False, the normalization layer will be frozen and will act as if it is being used for inference. If None, the layer will look up the Keras learning phase at `call` time to decide what to do. **overrides: batch normalization construction args to override from the batch_norm hyperparams dictionary. Returns: Either a FreezableBatchNorm layer (if use_batch_norm() is True), or a Keras Lambda layer that applies the identity (if use_batch_norm() is False) """ if self.use_batch_norm(): return freezable_batch_norm.FreezableBatchNorm( training=training, **self.batch_norm_params(**overrides) ) else: return tf.keras.layers.Lambda(tf.identity)
Example #2
Source File: hyperparams_builder.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def build_batch_norm(self, training=None, **overrides): """Returns a Batch Normalization layer with the appropriate hyperparams. If the hyperparams are configured to not use batch normalization, this will return a Keras Lambda layer that only applies tf.Identity, without doing any normalization. Optionally overrides values in the batch_norm hyperparam dict. Overrides only apply to individual calls of this method, and do not affect future calls. Args: training: if True, the normalization layer will normalize using the batch statistics. If False, the normalization layer will be frozen and will act as if it is being used for inference. If None, the layer will look up the Keras learning phase at `call` time to decide what to do. **overrides: batch normalization construction args to override from the batch_norm hyperparams dictionary. Returns: Either a FreezableBatchNorm layer (if use_batch_norm() is True), or a Keras Lambda layer that applies the identity (if use_batch_norm() is False) """ if self.use_batch_norm(): return freezable_batch_norm.FreezableBatchNorm( training=training, **self.batch_norm_params(**overrides) ) else: return tf.keras.layers.Lambda(tf.identity)
Example #3
Source File: hyperparams_builder.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 5 votes |
def build_batch_norm(self, training=None, **overrides): """Returns a Batch Normalization layer with the appropriate hyperparams. If the hyperparams are configured to not use batch normalization, this will return a Keras Lambda layer that only applies tf.Identity, without doing any normalization. Optionally overrides values in the batch_norm hyperparam dict. Overrides only apply to individual calls of this method, and do not affect future calls. Args: training: if True, the normalization layer will normalize using the batch statistics. If False, the normalization layer will be frozen and will act as if it is being used for inference. If None, the layer will look up the Keras learning phase at `call` time to decide what to do. **overrides: batch normalization construction args to override from the batch_norm hyperparams dictionary. Returns: Either a FreezableBatchNorm layer (if use_batch_norm() is True), or a Keras Lambda layer that applies the identity (if use_batch_norm() is False) """ if self.use_batch_norm(): return freezable_batch_norm.FreezableBatchNorm( training=training, **self.batch_norm_params(**overrides) ) else: return tf.keras.layers.Lambda(tf.identity)
Example #4
Source File: hyperparams_builder.py From Live-feed-object-device-identification-using-Tensorflow-and-OpenCV with Apache License 2.0 | 5 votes |
def build_batch_norm(self, training=None, **overrides): """Returns a Batch Normalization layer with the appropriate hyperparams. If the hyperparams are configured to not use batch normalization, this will return a Keras Lambda layer that only applies tf.Identity, without doing any normalization. Optionally overrides values in the batch_norm hyperparam dict. Overrides only apply to individual calls of this method, and do not affect future calls. Args: training: if True, the normalization layer will normalize using the batch statistics. If False, the normalization layer will be frozen and will act as if it is being used for inference. If None, the layer will look up the Keras learning phase at `call` time to decide what to do. **overrides: batch normalization construction args to override from the batch_norm hyperparams dictionary. Returns: Either a FreezableBatchNorm layer (if use_batch_norm() is True), or a Keras Lambda layer that applies the identity (if use_batch_norm() is False) """ if self.use_batch_norm(): return freezable_batch_norm.FreezableBatchNorm( training=training, **self.batch_norm_params(**overrides) ) else: return tf.keras.layers.Lambda(tf.identity)
Example #5
Source File: hyperparams_builder.py From MAX-Object-Detector with Apache License 2.0 | 5 votes |
def build_batch_norm(self, training=None, **overrides): """Returns a Batch Normalization layer with the appropriate hyperparams. If the hyperparams are configured to not use batch normalization, this will return a Keras Lambda layer that only applies tf.Identity, without doing any normalization. Optionally overrides values in the batch_norm hyperparam dict. Overrides only apply to individual calls of this method, and do not affect future calls. Args: training: if True, the normalization layer will normalize using the batch statistics. If False, the normalization layer will be frozen and will act as if it is being used for inference. If None, the layer will look up the Keras learning phase at `call` time to decide what to do. **overrides: batch normalization construction args to override from the batch_norm hyperparams dictionary. Returns: Either a FreezableBatchNorm layer (if use_batch_norm() is True), or a Keras Lambda layer that applies the identity (if use_batch_norm() is False) """ if self.use_batch_norm(): return freezable_batch_norm.FreezableBatchNorm( training=training, **self.batch_norm_params(**overrides) ) else: return tf.keras.layers.Lambda(tf.identity)
Example #6
Source File: hyperparams_builder.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def build_batch_norm(self, training=None, **overrides): """Returns a Batch Normalization layer with the appropriate hyperparams. If the hyperparams are configured to not use batch normalization, this will return a Keras Lambda layer that only applies tf.Identity, without doing any normalization. Optionally overrides values in the batch_norm hyperparam dict. Overrides only apply to individual calls of this method, and do not affect future calls. Args: training: if True, the normalization layer will normalize using the batch statistics. If False, the normalization layer will be frozen and will act as if it is being used for inference. If None, the layer will look up the Keras learning phase at `call` time to decide what to do. **overrides: batch normalization construction args to override from the batch_norm hyperparams dictionary. Returns: Either a FreezableBatchNorm layer (if use_batch_norm() is True), or a Keras Lambda layer that applies the identity (if use_batch_norm() is False) """ if self.use_batch_norm(): return freezable_batch_norm.FreezableBatchNorm( training=training, **self.batch_norm_params(**overrides) ) else: return tf.keras.layers.Lambda(tf.identity)
Example #7
Source File: hyperparams_builder.py From multilabel-image-classification-tensorflow with MIT License | 5 votes |
def build_batch_norm(self, training=None, **overrides): """Returns a Batch Normalization layer with the appropriate hyperparams. If the hyperparams are configured to not use batch normalization, this will return a Keras Lambda layer that only applies tf.Identity, without doing any normalization. Optionally overrides values in the batch_norm hyperparam dict. Overrides only apply to individual calls of this method, and do not affect future calls. Args: training: if True, the normalization layer will normalize using the batch statistics. If False, the normalization layer will be frozen and will act as if it is being used for inference. If None, the layer will look up the Keras learning phase at `call` time to decide what to do. **overrides: batch normalization construction args to override from the batch_norm hyperparams dictionary. Returns: Either a FreezableBatchNorm layer (if use_batch_norm() is True), or a Keras Lambda layer that applies the identity (if use_batch_norm() is False) """ if self.use_batch_norm(): return freezable_batch_norm.FreezableBatchNorm( training=training, **self.batch_norm_params(**overrides) ) else: return tf.keras.layers.Lambda(tf.identity)