Python tensorflow.glorot_uniform_initializer() Examples
The following are 30
code examples of tensorflow.glorot_uniform_initializer().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: encoders.py From neural-structured-learning with Apache License 2.0 | 6 votes |
def __init__(self, input_dim, is_train, train_dropout=1.0, emb_dim=None, proj_w=None, scope="attention", average=False): super(SigmoidNbrAttentionEmbedding, self).__init__() self.input_dim = input_dim self.scope = scope self.is_train = is_train self.dropout = train_dropout self.average = average if emb_dim: self.emb_dim = emb_dim else: # Keep embedding dimension same as input node embedding self.emb_dim = self.input_dim with tf.variable_scope(scope): if proj_w: self.proj_w = proj_w else: self.proj_w = tf.get_variable( "W_attention", shape=(2 * self.input_dim, self.emb_dim), initializer=tf.glorot_uniform_initializer() ) if not proj_w: utils.add_variable_summaries(self.proj_w, self.scope + "/W_attention")
Example #2
Source File: layer_utils.py From EasyRL with Apache License 2.0 | 6 votes |
def __init__(self, name, layer_conf): self._name = layer_conf.pop('name', None) or name activation_name = layer_conf.get('activation', None) if activation_name: layer_conf['activation'] = Layer.activation_dict[activation_name] self._kernel_initializer = layer_conf.pop('kernel_initializer', None) if isinstance(self._kernel_initializer, str): assert self._kernel_initializer in ('random_normal_initializer', 'random_uniform_initializer', 'glorot_normal_initializer', 'glorot_uniform_initializer'), \ "Invalid value of kernel_initializer, available value is one of " \ "['random_normal_initializer', 'random_uniform_initializer'," \ "'glorot_normal_initializer', 'glorot_uniform_initializer']" self._kernel_initializer = Layer.initializer_dict[ self._kernel_initializer] elif (isinstance(self._kernel_initializer, int) or isinstance(self._kernel_initializer, float)): self._kernel_initializer = tf.constant_initializer( value=self._kernel_initializer)
Example #3
Source File: ssd_net.py From SSD.TensorFlow with Apache License 2.0 | 6 votes |
def multibox_head(feature_layers, num_classes, num_anchors_depth_per_layer, data_format='channels_first'): with tf.variable_scope('multibox_head'): cls_preds = [] loc_preds = [] for ind, feat in enumerate(feature_layers): loc_preds.append(tf.layers.conv2d(feat, num_anchors_depth_per_layer[ind] * 4, (3, 3), use_bias=True, name='loc_{}'.format(ind), strides=(1, 1), padding='same', data_format=data_format, activation=None, kernel_initializer=tf.glorot_uniform_initializer(), bias_initializer=tf.zeros_initializer())) cls_preds.append(tf.layers.conv2d(feat, num_anchors_depth_per_layer[ind] * num_classes, (3, 3), use_bias=True, name='cls_{}'.format(ind), strides=(1, 1), padding='same', data_format=data_format, activation=None, kernel_initializer=tf.glorot_uniform_initializer(), bias_initializer=tf.zeros_initializer())) return loc_preds, cls_preds
Example #4
Source File: nn_module.py From BERT with Apache License 2.0 | 6 votes |
def _dense_block_mode1(x, hidden_units, dropouts, densenet=False, scope_name="dense_block", reuse=False, training=False, seed=0, bn=False): """ :param x: :param hidden_units: :param dropouts: :param densenet: enable densenet :return: Ref: https://github.com/titu1994/DenseNet """ for i, (h, d) in enumerate(zip(hidden_units, dropouts)): scope_name_i = "%s-dense_block_mode1-%s"%(str(scope_name), str(i)) with tf.variable_scope(scope_name, reuse=reuse): z = tf.layers.dense(x, h, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * i), reuse=reuse, name=scope_name_i) if bn: z = batch_normalization(z, training=training, name=scope_name_i+"-bn") z = tf.nn.relu(z) z = tf.layers.Dropout(d, seed=seed * i)(z, training=training) if d > 0 else z if densenet: x = tf.concat([x, z], axis=-1) else: x = z return x
Example #5
Source File: nn_module.py From BERT with Apache License 2.0 | 6 votes |
def _dense_block_mode2(x, hidden_units, dropouts, densenet=False, training=False, seed=0, bn=False, name="dense_block"): """ :param x: :param hidden_units: :param dropouts: :param densenet: enable densenet :return: Ref: https://github.com/titu1994/DenseNet """ for i, (h, d) in enumerate(zip(hidden_units, dropouts)): if bn: z = batch_normalization(x, training=training, name=name + "-" + str(i)) z = tf.nn.relu(z) z = tf.layers.Dropout(d, seed=seed * i)(z, training=training) if d > 0 else z z = tf.layers.Dense(h, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * i), dtype=tf.float32, bias_initializer=tf.zeros_initializer())(z) if densenet: x = tf.concat([x, z], axis=-1) else: x = z return x
Example #6
Source File: nn_module.py From BERT with Apache License 2.0 | 6 votes |
def _resnet_branch_mode1(x, hidden_units, dropouts, training, seed=0): h1, h2, h3 = hidden_units dr1, dr2, dr3 = dropouts name = "resnet_block" # branch 2 x2 = tf.layers.Dense(h1, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * 2), dtype=tf.float32, bias_initializer=tf.zeros_initializer())(x) x2 = tf.layers.BatchNormalization()(x2, training=training) # x2 = batch_normalization(x2, training=training, name=name + "-" + str(1)) x2 = tf.nn.relu(x2) x2 = tf.layers.Dropout(dr1, seed=seed * 1)(x2, training=training) if dr1 > 0 else x2 x2 = tf.layers.Dense(h2, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * 3), dtype=tf.float32, bias_initializer=tf.zeros_initializer())(x2) x2 = tf.layers.BatchNormalization()(x2, training=training) # x2 = batch_normalization(x2, training=training, name=name + "-" + str(2)) x2 = tf.nn.relu(x2) x2 = tf.layers.Dropout(dr2, seed=seed * 2)(x2, training=training) if dr2 > 0 else x2 x2 = tf.layers.Dense(h3, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * 4), dtype=tf.float32, bias_initializer=tf.zeros_initializer())(x2) x2 = tf.layers.BatchNormalization()(x2, training=training) # x2 = batch_normalization(x2, training=training, name=name + "-" + str(3)) return x2
Example #7
Source File: nn_module.py From tensorflow-DSMM with MIT License | 6 votes |
def _dense_block_mode1(x, hidden_units, dropouts, densenet=False, scope_name="dense_block", reuse=False, training=False, seed=0, bn=False): """ :param x: :param hidden_units: :param dropouts: :param densenet: enable densenet :return: Ref: https://github.com/titu1994/DenseNet """ for i, (h, d) in enumerate(zip(hidden_units, dropouts)): scope_name_i = "%s-dense_block_mode1-%s"%(str(scope_name), str(i)) with tf.variable_scope(scope_name, reuse=reuse): z = tf.layers.dense(x, h, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * i), reuse=reuse, name=scope_name_i) if bn: z = batch_normalization(z, training=training, name=scope_name_i+"-bn") z = tf.nn.relu(z) z = tf.layers.Dropout(d, seed=seed * i)(z, training=training) if d > 0 else z if densenet: x = tf.concat([x, z], axis=-1) else: x = z return x
Example #8
Source File: nn_module.py From tensorflow-DSMM with MIT License | 6 votes |
def _dense_block_mode2(x, hidden_units, dropouts, densenet=False, training=False, seed=0, bn=False, name="dense_block"): """ :param x: :param hidden_units: :param dropouts: :param densenet: enable densenet :return: Ref: https://github.com/titu1994/DenseNet """ for i, (h, d) in enumerate(zip(hidden_units, dropouts)): if bn: z = batch_normalization(x, training=training, name=name + "-" + str(i)) z = tf.nn.relu(z) z = tf.layers.Dropout(d, seed=seed * i)(z, training=training) if d > 0 else z z = tf.layers.Dense(h, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * i), dtype=tf.float32, bias_initializer=tf.zeros_initializer())(z) if densenet: x = tf.concat([x, z], axis=-1) else: x = z return x
Example #9
Source File: nn_module.py From tensorflow-DSMM with MIT License | 6 votes |
def _resnet_branch_mode1(x, hidden_units, dropouts, training, seed=0): h1, h2, h3 = hidden_units dr1, dr2, dr3 = dropouts name = "resnet_block" # branch 2 x2 = tf.layers.Dense(h1, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * 2), dtype=tf.float32, bias_initializer=tf.zeros_initializer())(x) x2 = tf.layers.BatchNormalization()(x2, training=training) # x2 = batch_normalization(x2, training=training, name=name + "-" + str(1)) x2 = tf.nn.relu(x2) x2 = tf.layers.Dropout(dr1, seed=seed * 1)(x2, training=training) if dr1 > 0 else x2 x2 = tf.layers.Dense(h2, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * 3), dtype=tf.float32, bias_initializer=tf.zeros_initializer())(x2) x2 = tf.layers.BatchNormalization()(x2, training=training) # x2 = batch_normalization(x2, training=training, name=name + "-" + str(2)) x2 = tf.nn.relu(x2) x2 = tf.layers.Dropout(dr2, seed=seed * 2)(x2, training=training) if dr2 > 0 else x2 x2 = tf.layers.Dense(h3, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * 4), dtype=tf.float32, bias_initializer=tf.zeros_initializer())(x2) x2 = tf.layers.BatchNormalization()(x2, training=training) # x2 = batch_normalization(x2, training=training, name=name + "-" + str(3)) return x2
Example #10
Source File: nn_module.py From tensorflow-XNN with MIT License | 6 votes |
def _resnet_branch_mode1(x, hidden_units, dropouts, training, seed=0): h1, h2, h3 = hidden_units dr1, dr2, dr3 = dropouts # branch 2 x2 = tf.layers.Dense(h1, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * 2), dtype=tf.float32, bias_initializer=tf.zeros_initializer())(x) x2 = tf.layers.BatchNormalization()(x2) x2 = tf.nn.relu(x2) x2 = tf.layers.Dropout(dr1, seed=seed * 1)(x2, training=training) if dr1 > 0 else x2 x2 = tf.layers.Dense(h2, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * 3), dtype=tf.float32, bias_initializer=tf.zeros_initializer())(x2) x2 = tf.layers.BatchNormalization()(x2) x2 = tf.nn.relu(x2) x2 = tf.layers.Dropout(dr2, seed=seed * 2)(x2, training=training) if dr2 > 0 else x2 x2 = tf.layers.Dense(h3, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * 4), dtype=tf.float32, bias_initializer=tf.zeros_initializer())(x2) x2 = tf.layers.BatchNormalization()(x2) return x2
Example #11
Source File: nn_module.py From tensorflow-XNN with MIT License | 6 votes |
def _dense_block_mode2(x, hidden_units, dropouts, densenet=False, training=False, seed=0, bn=False, name="dense_block"): """ :param x: :param hidden_units: :param dropouts: :param densenet: enable densenet :return: Ref: https://github.com/titu1994/DenseNet """ for i, (h, d) in enumerate(zip(hidden_units, dropouts)): if bn: z = batch_normalization(x, training=training, name=name + "-" + str(i)) z = tf.nn.relu(z) z = tf.layers.Dropout(d, seed=seed * i)(z, training=training) if d > 0 else z z = tf.layers.Dense(h, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * i), dtype=tf.float32, bias_initializer=tf.zeros_initializer())(z) if densenet: x = tf.concat([x, z], axis=-1) else: x = z return x
Example #12
Source File: nn_module.py From tensorflow-XNN with MIT License | 6 votes |
def _dense_block_mode1(x, hidden_units, dropouts, densenet=False, training=False, seed=0, bn=False, name="dense_block"): """ :param x: :param hidden_units: :param dropouts: :param densenet: enable densenet :return: Ref: https://github.com/titu1994/DenseNet """ for i, (h, d) in enumerate(zip(hidden_units, dropouts)): z = tf.layers.Dense(h, kernel_initializer=tf.glorot_uniform_initializer(seed=seed * i), dtype=tf.float32, bias_initializer=tf.zeros_initializer())(x) if bn: z = batch_normalization(z, training=training, name=name+"-"+str(i)) z = tf.nn.relu(z) # z = tf.nn.selu(z) z = tf.layers.Dropout(d, seed=seed * i)(z, training=training) if d > 0 else z if densenet: x = tf.concat([x, z], axis=-1) else: x = z return x
Example #13
Source File: graphsage.py From gnn-benchmark with MIT License | 6 votes |
def aggregate_maxpool(features, agg_transform_size, adj_with_self_loops_indices, num_features, name): with tf.name_scope(name): fc_weights = tf.get_variable(f"{name}-fc_weights", shape=[num_features, agg_transform_size], dtype=tf.float32, initializer=tf.glorot_uniform_initializer(), ) # dims: num_nodes x num_features, num_features x agg_transform_size -> num_nodes x agg_transform_size if isinstance(features, tf.SparseTensor): transformed_features = tf.sparse_tensor_dense_matmul(features, fc_weights) else: transformed_features = tf.matmul(features, fc_weights) transformed_features = tf.nn.relu(transformed_features) # Spread out the transformed features to neighbours. # dims: num_nodes x agg_transform_size, num_nodes x max_degree -> num_nodes x agg_transform_size x max_degree neighbours_features = tf.gather(transformed_features, adj_with_self_loops_indices) # employ the max aggregator output = tf.reduce_max(neighbours_features, axis=1) return output # dims: # features: num_nodes x num_features
Example #14
Source File: mlp.py From gnn-benchmark with MIT License | 6 votes |
def fully_connected_layer(inputs, output_dim, activation_fn, dropout_prob, weight_decay, name): with tf.name_scope(name): input_dim = int(inputs.get_shape()[1]) weights = tf.get_variable("%s-weights" % name, [input_dim, output_dim], dtype=tf.float32, initializer=tf.glorot_uniform_initializer(), regularizer=slim.l2_regularizer(weight_decay)) # Apply dropout to inputs if required inputs = tf.cond( tf.cast(dropout_prob, tf.bool), true_fn=(lambda: dropout_supporting_sparse_tensors(inputs, 1 - dropout_prob)), false_fn=(lambda: inputs), ) if isinstance(inputs, tf.SparseTensor): output = tf.sparse_tensor_dense_matmul(inputs, weights) else: output = tf.matmul(inputs, weights) output = tf.contrib.layers.bias_add(output) return activation_fn(output) if activation_fn else output
Example #15
Source File: model.py From multimodal-sentiment-analysis with MIT License | 6 votes |
def BiGRU(self, inputs, output_size, name, dropout_keep_rate): with tf.variable_scope('rnn_' + name, reuse=tf.AUTO_REUSE): kernel_init = tf.glorot_uniform_initializer(seed=self.seed, dtype=tf.float32) bias_init = tf.zeros_initializer() fw_cell = tf.contrib.rnn.GRUCell(output_size, name='gru', reuse=tf.AUTO_REUSE, activation=tf.nn.tanh, kernel_initializer=kernel_init, bias_initializer=bias_init) fw_cell = tf.contrib.rnn.DropoutWrapper(fw_cell, output_keep_prob=dropout_keep_rate) # bw_cell = tf.contrib.rnn.GRUCell(output_size, name='gru', reuse=tf.AUTO_REUSE, activation=tf.nn.tanh, # kernel_initializer=kernel_init, bias_initializer=bias_init) # bw_cell = tf.contrib.rnn.DropoutWrapper(bw_cell, output_keep_prob=dropout_keep_rate) outputs, _ = tf.nn.bidirectional_dynamic_rnn(cell_fw=fw_cell, cell_bw=fw_cell, inputs=inputs, sequence_length=self.seq_len, dtype=tf.float32) output_fw, output_bw = outputs output = tf.concat([output_fw, output_bw], axis=-1) return output
Example #16
Source File: model.py From RecommenderSystems with MIT License | 6 votes |
def build(self): self.embedding = embedding = tf.get_variable('item_embedding', [self.n_items, self.emb_item],\ initializer=tf.glorot_uniform_initializer()) features_0 = self.decode() # features of zero layer nodes. #outputs with shape [max_time, batch_size, dim2] if self.global_only: features_1_2 = self.global_features() elif self.local_only: features_1_2 = self.local_features() else: features_1_2 = self.global_and_local_features() outputs = self.step_by_step(features_0, features_1_2, self.dims, self.num_samples, self.support_sizes, concat=self.concat) concat_self = tf.concat([features_0, outputs], axis=-1) # exchange first two dimensions. self.transposed_outputs = tf.transpose(concat_self, [1,0,2]) self.loss = self._loss() self.sum_recall = self._recall() self.sum_ndcg = self._ndcg() grads_and_vars = self.optimizer.compute_gradients(self.loss) clipped_grads_and_vars = [(tf.clip_by_value(grad, -5.0, 5.0) if grad is not None else None, var) for grad, var in grads_and_vars] self.opt_op = self.optimizer.apply_gradients(clipped_grads_and_vars, global_step=self.global_step)
Example #17
Source File: model.py From multimodal-sentiment-analysis with MIT License | 6 votes |
def GRU2(self, inputs, output_size, name, dropout_keep_rate): with tf.variable_scope('rnn_' + name, reuse=tf.AUTO_REUSE): kernel_init = tf.glorot_uniform_initializer(seed=self.seed, dtype=tf.float32) bias_init = tf.zeros_initializer() fw_cell = tf.contrib.rnn.GRUCell(output_size, name='gru', reuse=tf.AUTO_REUSE, activation=tf.nn.tanh, kernel_initializer=kernel_init, bias_initializer=bias_init) fw_cell = tf.contrib.rnn.DropoutWrapper(fw_cell, output_keep_prob=dropout_keep_rate) bw_cell = tf.contrib.rnn.GRUCell(output_size, name='gru', reuse=tf.AUTO_REUSE, activation=tf.nn.tanh, kernel_initializer=kernel_init, bias_initializer=bias_init) bw_cell = tf.contrib.rnn.DropoutWrapper(bw_cell, output_keep_prob=dropout_keep_rate) output_fw, _ = tf.nn.dynamic_rnn(fw_cell, inputs, sequence_length=self.seq_len, dtype=tf.float32) output_bw, _ = tf.nn.dynamic_rnn(bw_cell, inputs, sequence_length=self.seq_len, dtype=tf.float32) output = tf.concat([output_fw, output_bw], axis=-1) return output
Example #18
Source File: model.py From AmusingPythonCodes with MIT License | 6 votes |
def BiGRU(self, inputs, output_size, name, dropout_keep_rate): with tf.variable_scope('rnn_' + name, reuse=tf.AUTO_REUSE): kernel_init = tf.glorot_uniform_initializer(seed=self.seed, dtype=tf.float32) bias_init = tf.zeros_initializer() fw_cell = tf.contrib.rnn.GRUCell(output_size, name='gru', reuse=tf.AUTO_REUSE, activation=tf.nn.tanh, kernel_initializer=kernel_init, bias_initializer=bias_init) fw_cell = tf.contrib.rnn.DropoutWrapper(fw_cell, output_keep_prob=dropout_keep_rate) bw_cell = tf.contrib.rnn.GRUCell(output_size, name='gru', reuse=tf.AUTO_REUSE, activation=tf.nn.tanh, kernel_initializer=kernel_init, bias_initializer=bias_init) bw_cell = tf.contrib.rnn.DropoutWrapper(bw_cell, output_keep_prob=dropout_keep_rate) outputs, _ = tf.nn.bidirectional_dynamic_rnn(cell_fw=fw_cell, cell_bw=fw_cell, inputs=inputs, sequence_length=self.seq_len, dtype=tf.float32) output_fw, output_bw = outputs output = tf.concat([output_fw, output_bw], axis=-1) return output
Example #19
Source File: model.py From AmusingPythonCodes with MIT License | 6 votes |
def GRU2(self, inputs, output_size, name, dropout_keep_rate): with tf.variable_scope('rnn_' + name, reuse=tf.AUTO_REUSE): kernel_init = tf.glorot_uniform_initializer(seed=self.seed, dtype=tf.float32) bias_init = tf.zeros_initializer() fw_cell = tf.contrib.rnn.GRUCell(output_size, name='gru', reuse=tf.AUTO_REUSE, activation=tf.nn.tanh, kernel_initializer=kernel_init, bias_initializer=bias_init) fw_cell = tf.contrib.rnn.DropoutWrapper(fw_cell, output_keep_prob=dropout_keep_rate) bw_cell = tf.contrib.rnn.GRUCell(output_size, name='gru', reuse=tf.AUTO_REUSE, activation=tf.nn.tanh, kernel_initializer=kernel_init, bias_initializer=bias_init) bw_cell = tf.contrib.rnn.DropoutWrapper(bw_cell, output_keep_prob=dropout_keep_rate) output_fw, _ = tf.nn.dynamic_rnn(fw_cell, inputs, sequence_length=self.seq_len, dtype=tf.float32) output_bw, _ = tf.nn.dynamic_rnn(bw_cell, inputs, sequence_length=self.seq_len, dtype=tf.float32) output = tf.concat([output_fw, output_bw], axis=-1) return output
Example #20
Source File: tf_utils.py From GMAN with Apache License 2.0 | 6 votes |
def conv2d(x, output_dims, kernel_size, stride = [1, 1], padding = 'SAME', use_bias = True, activation = tf.nn.relu, bn = False, bn_decay = None, is_training = None): input_dims = x.get_shape()[-1].value kernel_shape = kernel_size + [input_dims, output_dims] kernel = tf.Variable( tf.glorot_uniform_initializer()(shape = kernel_shape), dtype = tf.float32, trainable = True, name = 'kernel') x = tf.nn.conv2d(x, kernel, [1] + stride + [1], padding = padding) if use_bias: bias = tf.Variable( tf.zeros_initializer()(shape = [output_dims]), dtype = tf.float32, trainable = True, name = 'bias') x = tf.nn.bias_add(x, bias) if activation is not None: if bn: x = batch_norm(x, is_training = is_training, bn_decay = bn_decay) x = activation(x) return x
Example #21
Source File: tf_utils.py From GMAN with Apache License 2.0 | 6 votes |
def conv2d(x, output_dims, kernel_size, stride = [1, 1], padding = 'SAME', use_bias = True, activation = tf.nn.relu, bn = False, bn_decay = None, is_training = None): input_dims = x.get_shape()[-1].value kernel_shape = kernel_size + [input_dims, output_dims] kernel = tf.Variable( tf.glorot_uniform_initializer()(shape = kernel_shape), dtype = tf.float32, trainable = True, name = 'kernel') x = tf.nn.conv2d(x, kernel, [1] + stride + [1], padding = padding) if use_bias: bias = tf.Variable( tf.zeros_initializer()(shape = [output_dims]), dtype = tf.float32, trainable = True, name = 'bias') x = tf.nn.bias_add(x, bias) if activation is not None: if bn: x = batch_norm(x, is_training = is_training, bn_decay = bn_decay) x = activation(x) return x
Example #22
Source File: detxt_cpn.py From tf.fashionAI with Apache License 2.0 | 6 votes |
def conv2d_fixed_padding(inputs, filters, kernel_size, strides, data_format, kernel_initializer=tf.glorot_uniform_initializer, name=None): """Strided 2-D convolution with explicit padding.""" # The padding is consistent and is based only on `kernel_size`, not on the # dimensions of `inputs` (as opposed to using `tf.layers.conv2d` alone). if strides > 1: inputs = fixed_padding(inputs, kernel_size, data_format) return tf.layers.conv2d( inputs=inputs, filters=filters, kernel_size=kernel_size, strides=strides, padding=('SAME' if strides == 1 else 'VALID'), use_bias=False, kernel_initializer=kernel_initializer(), data_format=data_format, name=name) # input image order: BGR, range [0-255] # mean_value: 104, 117, 123 # only subtract mean is used
Example #23
Source File: simple_xt.py From tf.fashionAI with Apache License 2.0 | 6 votes |
def conv2d_fixed_padding(inputs, filters, kernel_size, strides, data_format, kernel_initializer=tf.glorot_uniform_initializer, name=None): """Strided 2-D convolution with explicit padding.""" # The padding is consistent and is based only on `kernel_size`, not on the # dimensions of `inputs` (as opposed to using `tf.layers.conv2d` alone). if strides > 1: inputs = fixed_padding(inputs, kernel_size, data_format) return tf.layers.conv2d( inputs=inputs, filters=filters, kernel_size=kernel_size, strides=strides, padding=('SAME' if strides == 1 else 'VALID'), use_bias=False, kernel_initializer=kernel_initializer(), data_format=data_format, name=name) # input image order: BGR, range [0-255] # mean_value: 104, 117, 123 # only subtract mean is used
Example #24
Source File: seresnet_cpn.py From tf.fashionAI with Apache License 2.0 | 6 votes |
def conv2d_fixed_padding(inputs, filters, kernel_size, strides, data_format, kernel_initializer=tf.glorot_uniform_initializer, name=None): """Strided 2-D convolution with explicit padding.""" # The padding is consistent and is based only on `kernel_size`, not on the # dimensions of `inputs` (as opposed to using `tf.layers.conv2d` alone). if strides > 1: inputs = fixed_padding(inputs, kernel_size, data_format) return tf.layers.conv2d( inputs=inputs, filters=filters, kernel_size=kernel_size, strides=strides, padding=('SAME' if strides == 1 else 'VALID'), use_bias=False, kernel_initializer=kernel_initializer(), data_format=data_format, name=name) ################################################################################ # ResNet block definitions. ################################################################################
Example #25
Source File: cpn.py From tf.fashionAI with Apache License 2.0 | 6 votes |
def conv2d_fixed_padding(inputs, filters, kernel_size, strides, data_format, kernel_initializer=tf.glorot_uniform_initializer, name=None): """Strided 2-D convolution with explicit padding.""" # The padding is consistent and is based only on `kernel_size`, not on the # dimensions of `inputs` (as opposed to using `tf.layers.conv2d` alone). if strides > 1: inputs = fixed_padding(inputs, kernel_size, data_format) return tf.layers.conv2d( inputs=inputs, filters=filters, kernel_size=kernel_size, strides=strides, padding=('SAME' if strides == 1 else 'VALID'), use_bias=False, kernel_initializer=kernel_initializer(), data_format=data_format, name=name) ################################################################################ # ResNet block definitions. ################################################################################
Example #26
Source File: cpn.py From tf.fashionAI with Apache License 2.0 | 6 votes |
def cpn_backbone(inputs, istraining, data_format): block_strides = [1, 2, 2, 2] inputs = conv2d_fixed_padding(inputs=inputs, filters=64, kernel_size=7, strides=2, data_format=data_format, kernel_initializer=tf.glorot_uniform_initializer) inputs = tf.identity(inputs, 'initial_conv') inputs = tf.layers.max_pooling2d(inputs=inputs, pool_size=3, strides=2, padding='SAME', data_format=data_format) inputs = tf.identity(inputs, 'initial_max_pool') end_points = [] for i, num_blocks in enumerate([3, 4, 6, 3]): num_filters = 64 * (2**i) #with tf.variable_scope('block_{}'.format(i), 'resnet50', values=[inputs]): inputs = block_layer( inputs=inputs, filters=num_filters, bottleneck=True, block_fn=_bottleneck_block_v1, blocks=num_blocks, strides=block_strides[i], training=istraining, name='block_layer{}'.format(i + 1), data_format=data_format) end_points.append(inputs) return end_points
Example #27
Source File: encoders.py From neural-structured-learning with Apache License 2.0 | 6 votes |
def __init__(self, emb_dim, is_train, train_dropout=1.0, input_dim=None, embeddings=None, scope="embeddings", use_tanh=False, num_ps_tasks=None): super(EmbeddingLookup, self).__init__() self.emb_dim = emb_dim self.is_train = is_train self.dropout = train_dropout self.use_tanh = use_tanh with tf.variable_scope(scope): if embeddings: self.embeddings = embeddings else: partitioner = None if num_ps_tasks: partitioner = tf.min_max_variable_partitioner( max_partitions=num_ps_tasks ) self.embeddings = tf.get_variable( "embeddings", shape=(input_dim, self.emb_dim), initializer=tf.glorot_uniform_initializer(), partitioner=partitioner ) if not embeddings: utils.add_variable_summaries(self.embeddings, scope)
Example #28
Source File: encoders.py From neural-structured-learning with Apache License 2.0 | 6 votes |
def __init__(self, input_dim, is_train, train_dropout=1.0, emb_dim=None, proj_w=None, scope="attention"): super(NbrAttentionEmbedding, self).__init__() self.input_dim = input_dim self.scope = scope self.is_train = is_train self.dropout = train_dropout if emb_dim: self.emb_dim = emb_dim else: # Keep embedding dimension same as input node embedding self.emb_dim = self.input_dim with tf.variable_scope(scope): if proj_w: self.proj_w = proj_w else: self.proj_w = tf.get_variable( "W_attention", shape=(2 * self.input_dim, self.emb_dim), initializer=tf.glorot_uniform_initializer() ) if not proj_w: utils.add_variable_summaries(self.proj_w, self.scope + "/W_attention")
Example #29
Source File: initializer.py From zero with BSD 3-Clause "New" or "Revised" License | 6 votes |
def get_initializer(initializer, initializer_gain): tfdtype = tf.as_dtype(dtype.floatx()) if initializer == "uniform": max_val = initializer_gain return tf.random_uniform_initializer(-max_val, max_val, dtype=tfdtype) elif initializer == "normal": return tf.random_normal_initializer(0.0, initializer_gain, dtype=tfdtype) elif initializer == "normal_unit_scaling": return tf.variance_scaling_initializer(initializer_gain, mode="fan_avg", distribution="normal", dtype=tfdtype) elif initializer == "uniform_unit_scaling": return tf.variance_scaling_initializer(initializer_gain, mode="fan_avg", distribution="uniform", dtype=tfdtype) else: tf.logging.warn("Unrecognized initializer: %s" % initializer) tf.logging.warn("Return to default initializer: glorot_uniform_initializer") return tf.glorot_uniform_initializer(dtype=tfdtype)
Example #30
Source File: model.py From AmusingPythonCodes with MIT License | 5 votes |
def GRU(self, inputs, output_size, name, dropout_keep_rate): with tf.variable_scope('rnn_' + name, reuse=tf.AUTO_REUSE): kernel_init = tf.glorot_uniform_initializer(seed=self.seed, dtype=tf.float32) bias_init = tf.zeros_initializer() cell = tf.contrib.rnn.GRUCell(output_size, name='gru', reuse=tf.AUTO_REUSE, activation=tf.nn.tanh, kernel_initializer=kernel_init, bias_initializer=bias_init) cell = tf.contrib.rnn.DropoutWrapper(cell, output_keep_prob=dropout_keep_rate) output, _ = tf.nn.dynamic_rnn(cell, inputs, sequence_length=self.seq_len, dtype=tf.float32) return output