Python tensorflow.make_ndarray() Examples
The following are 30
code examples of tensorflow.make_ndarray().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: serving_utils.py From BERT with Apache License 2.0 | 6 votes |
def make_grpc_request_fn(servable_name, server, timeout_secs): """Wraps function to make grpc requests with runtime args.""" stub = _create_stub(server) def _make_grpc_request(examples): """Builds and sends request to TensorFlow model server.""" request = predict_pb2.PredictRequest() request.model_spec.name = servable_name request.inputs["input"].CopyFrom( tf.make_tensor_proto( [ex.SerializeToString() for ex in examples], shape=[len(examples)])) response = stub.Predict(request, timeout_secs) outputs = tf.make_ndarray(response.outputs["outputs"]) scores = tf.make_ndarray(response.outputs["scores"]) assert len(outputs) == len(scores) return [{ # pylint: disable=g-complex-comprehension "outputs": output, "scores": score } for output, score in zip(outputs, scores)] return _make_grpc_request
Example #2
Source File: _tf_utils.py From keras-onnx with MIT License | 6 votes |
def cal_tensor_value(tensor): # type: (tensorflow.Tensor)->Union[np.ndarray, None] if _count_input_nodes(tensor) < 0: return None node = tensor.op if node.type in ["Const", "ConstV2"]: make_ndarray = tensorflow.make_ndarray np_arr = make_ndarray(node.get_attr("value")) return np_arr else: try: cls_sess = tensorflow.Session if hasattr(tensorflow, 'Session') else tensorflow.compat.v1.Session with cls_sess(graph=node.graph) as sess: np_arr = sess.run(tensor) return np_arr except (ValueError, tensorflow.errors.InvalidArgumentError, tensorflow.errors.OpError): return None
Example #3
Source File: histograms_plugin.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 6 votes |
def histograms_impl(self, tag, run, downsample_to=50): """Result of the form `(body, mime_type)`, or `ValueError`. At most `downsample_to` events will be returned. If this value is `None`, then no downsampling will be performed. """ try: tensor_events = self._multiplexer.Tensors(run, tag) except KeyError: raise ValueError('No histogram tag %r for run %r' % (tag, run)) events = [[ev.wall_time, ev.step, tf.make_ndarray(ev.tensor_proto).tolist()] for ev in tensor_events] if downsample_to is not None and len(events) > downsample_to: indices = sorted(random.Random(0).sample(list(range(len(events))), downsample_to)) events = [events[i] for i in indices] return (events, 'application/json')
Example #4
Source File: test_predict_utils.py From model_server with Apache License 2.0 | 6 votes |
def test_prepare_output_as_list(serialization_function, outputs_names, shapes, types): outputs = {} x = 0 for key, value in outputs_names.items(): outputs[value] = np.ones(shape=shapes[x], dtype=types[x]) x += 1 output = SERIALIZATION_FUNCTIONS[serialization_function]( inference_output=outputs, model_available_outputs=outputs_names) x = 0 for key, value in outputs_names.items(): temp_output = make_ndarray(output.outputs[key]) assert temp_output.shape == shapes[x] assert temp_output.dtype == types[x] x += 1
Example #5
Source File: test_predict_grpc.py From model_server with Apache License 2.0 | 6 votes |
def test_predict_successful_version(mocker, get_grpc_service_for_predict): results_mock = mocker.patch( 'ie_serving.server.request.Request.wait_for_result') expected_response = np.ones(shape=(2, 2)) results_mock.return_value = ({'output': expected_response}, None) requested_version = 1 request = get_fake_request(model_name='test', data_shape=(1, 1, 1), input_blob='input', version=requested_version) grpc_server = get_grpc_service_for_predict rpc = grpc_server.invoke_unary_unary( PREDICT_SERVICE.methods_by_name['Predict'], (), request, None) rpc.initial_metadata() response, trailing_metadata, code, details = rpc.termination() encoded_response = make_ndarray(response.outputs['output']) assert requested_version == response.model_spec.version.value assert grpc.StatusCode.OK == code assert expected_response.shape == encoded_response.shape
Example #6
Source File: test_predict_grpc.py From model_server with Apache License 2.0 | 6 votes |
def test_predict_successful(mocker, get_grpc_service_for_predict, get_fake_model): results_mock = mocker.patch( 'ie_serving.server.request.Request.wait_for_result') expected_response = np.ones(shape=(2, 2)) results_mock.return_value = ({'output': expected_response}, 0) request = get_fake_request(model_name='test', data_shape=(1, 1, 1), input_blob='input') grpc_server = get_grpc_service_for_predict rpc = grpc_server.invoke_unary_unary( PREDICT_SERVICE.methods_by_name['Predict'], (), request, None) rpc.initial_metadata() response, trailing_metadata, code, details = rpc.termination() encoded_response = make_ndarray(response.outputs['output']) assert get_fake_model.default_version == response.model_spec.version.value assert grpc.StatusCode.OK == code assert expected_response.shape == encoded_response.shape
Example #7
Source File: serving_utils.py From training_results_v0.5 with Apache License 2.0 | 6 votes |
def make_grpc_request_fn(servable_name, server, timeout_secs): """Wraps function to make grpc requests with runtime args.""" stub = _create_stub(server) def _make_grpc_request(examples): """Builds and sends request to TensorFlow model server.""" request = predict_pb2.PredictRequest() request.model_spec.name = servable_name request.inputs["input"].CopyFrom( tf.contrib.util.make_tensor_proto( [ex.SerializeToString() for ex in examples], shape=[len(examples)])) response = stub.Predict(request, timeout_secs) outputs = tf.make_ndarray(response.outputs["outputs"]) scores = tf.make_ndarray(response.outputs["scores"]) assert len(outputs) == len(scores) return [{ "outputs": outputs[i], "scores": scores[i] } for i in range(len(outputs))] return _make_grpc_request
Example #8
Source File: serving_utils.py From fine-lm with MIT License | 6 votes |
def make_grpc_request_fn(servable_name, server, timeout_secs): """Wraps function to make grpc requests with runtime args.""" stub = _create_stub(server) def _make_grpc_request(examples): """Builds and sends request to TensorFlow model server.""" request = predict_pb2.PredictRequest() request.model_spec.name = servable_name request.inputs["input"].CopyFrom( tf.contrib.util.make_tensor_proto( [ex.SerializeToString() for ex in examples], shape=[len(examples)])) response = stub.Predict(request, timeout_secs) outputs = tf.make_ndarray(response.outputs["outputs"]) scores = tf.make_ndarray(response.outputs["scores"]) assert len(outputs) == len(scores) return [{ "outputs": outputs[i], "scores": scores[i] } for i in range(len(outputs))] return _make_grpc_request
Example #9
Source File: ende_client.py From OpenNMT-tf with MIT License | 6 votes |
def extract_prediction(result): """Parses a translation result. Args: result: A `PredictResponse` proto. Returns: A generator over the hypotheses. """ batch_lengths = tf.make_ndarray(result.outputs["length"]) batch_predictions = tf.make_ndarray(result.outputs["tokens"]) for hypotheses, lengths in zip(batch_predictions, batch_lengths): # Only consider the first hypothesis (the best one). best_hypothesis = hypotheses[0].tolist() best_length = lengths[0] if best_hypothesis[best_length - 1] == b"</s>": best_length -= 1 yield best_hypothesis[:best_length]
Example #10
Source File: audio_plugin.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def _audio_response_for_run(self, tensor_events, run, tag, sample): """Builds a JSON-serializable object with information about audio. Args: tensor_events: A list of image event_accumulator.TensorEvent objects. run: The name of the run. tag: The name of the tag the audio entries all belong to. sample: The zero-indexed sample of the audio sample for which to retrieve information. For instance, setting `sample` to `2` will fetch information about only the third audio clip of each batch, and steps with fewer than three audio clips will be omitted from the results. Returns: A list of dictionaries containing the wall time, step, URL, width, and height for each audio entry. """ response = [] index = 0 filtered_events = self._filter_by_sample(tensor_events, sample) content_type = self._get_mime_type(run, tag) for (index, tensor_event) in enumerate(filtered_events): data = tf.make_ndarray(tensor_event.tensor_proto) label = data[sample, 1] response.append({ 'wall_time': tensor_event.wall_time, 'step': tensor_event.step, 'label': plugin_util.markdown_to_safe_html(label), 'contentType': content_type, 'query': self._query_for_individual_audio(run, tag, sample, index) }) return response
Example #11
Source File: audio_plugin.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def _serve_individual_audio(self, request): """Serve encoded audio data.""" tag = request.args.get('tag') run = request.args.get('run') index = int(request.args.get('index')) sample = int(request.args.get('sample', 0)) events = self._filter_by_sample(self._multiplexer.Tensors(run, tag), sample) data = tf.make_ndarray(events[index].tensor_proto)[sample, 0] mime_type = self._get_mime_type(run, tag) return http_util.Respond(request, data, mime_type)
Example #12
Source File: pr_curves_plugin.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def _process_tensor_event(self, event, thresholds): """Converts a TensorEvent into a dict that encapsulates information on it. Args: event: The TensorEvent to convert. thresholds: An array of floats that ranges from 0 to 1 (in that direction and inclusive of 0 and 1). Returns: A JSON-able dictionary of PR curve data for 1 step. """ data_array = tf.make_ndarray(event.tensor_proto) # Trim entries for which TP + FP = 0 (precision is undefined) at the tail of # the data. true_positives = [int(v) for v in data_array[metadata.TRUE_POSITIVES_INDEX]] false_positives = [ int(v) for v in data_array[metadata.FALSE_POSITIVES_INDEX]] tp_index = metadata.TRUE_POSITIVES_INDEX fp_index = metadata.FALSE_POSITIVES_INDEX positives = data_array[[tp_index, fp_index], :].astype(int).sum(axis=0) end_index_inclusive = len(positives) - 1 while end_index_inclusive > 0 and positives[end_index_inclusive] == 0: end_index_inclusive -= 1 end_index = end_index_inclusive + 1 return { 'wall_time': event.wall_time, 'step': event.step, 'precision': data_array[metadata.PRECISION_INDEX, :end_index].tolist(), 'recall': data_array[metadata.RECALL_INDEX, :end_index].tolist(), 'true_positives': true_positives[:end_index], 'false_positives': false_positives[:end_index], 'true_negatives': [int(v) for v in data_array[metadata.TRUE_NEGATIVES_INDEX][:end_index]], 'false_negatives': [int(v) for v in data_array[metadata.FALSE_NEGATIVES_INDEX][:end_index]], 'thresholds': thresholds[:end_index], }
Example #13
Source File: text_plugin.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def process_string_tensor_event(event): """Convert a TensorEvent into a JSON-compatible response.""" string_arr = tf.make_ndarray(event.tensor_proto) html = text_array_to_html(string_arr) return { 'wall_time': event.wall_time, 'step': event.step, 'text': html, }
Example #14
Source File: debugger_plugin.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def _process_health_pill_value(self, wall_time, step, device_name, output_slot, node_name, tensor_proto, node_name_set=None): """Creates a HealthPillEvent containing various properties of a health pill. Args: wall_time: The wall time in seconds. step: The session run step of the event. device_name: The name of the node's device. output_slot: The numeric output slot. node_name: The name of the node (without the output slot). tensor_proto: A tensor proto of data. node_name_set: An optional set of node names that are relevant. If not provided, no filtering by relevance occurs. Returns: An event_accumulator.HealthPillEvent. Or None if one could not be created. """ if node_name_set and node_name not in node_name_set: # This event is not relevant. return None # Since we seek health pills for a specific step, this function # returns 1 health pill per node per step. The wall time is the # seconds since the epoch. elements = list(tf.make_ndarray(tensor_proto)) return HealthPillEvent( wall_time=wall_time, step=step, device_name=device_name, output_slot=output_slot, node_name=node_name, dtype=repr(tf.as_dtype(elements[12])), shape=elements[14:], value=elements)
Example #15
Source File: parse_layer_parameters.py From receptive_field with Apache License 2.0 | 5 votes |
def _padding_size_pad_layer(node, name_to_node): """Computes padding size given a TF padding node. Args: node: Tensorflow node (NodeDef proto). name_to_node: Dict keyed by node name, each entry containing the node's NodeDef. Returns: total_padding_x: Total padding size for horizontal direction (integer). padding_x: Padding size for horizontal direction, left side (integer). total_padding_y: Total padding size for vertical direction (integer). padding_y: Padding size for vertical direction, top side (integer). Raises: ValueError: If padding layer is invalid. """ paddings_layer_name = node.input[1] if not paddings_layer_name.endswith("/paddings"): raise ValueError("Padding layer name does not end with '/paddings'") paddings_node = name_to_node[paddings_layer_name] if paddings_node.op != "Const": raise ValueError("Padding op is not Const") value = paddings_node.attr["value"] t = tf.make_ndarray(value.tensor) padding_y = t[1][0] padding_x = t[2][0] total_padding_y = padding_y + t[1][1] total_padding_x = padding_x + t[2][1] if (t[0][0] != 0) or (t[0][1] != 0): raise ValueError("padding is not zero for first tensor dim") if (t[3][0] != 0) or (t[3][1] != 0): raise ValueError("padding is not zero for last tensor dim") return total_padding_x, padding_x, total_padding_y, padding_y
Example #16
Source File: scalars_plugin.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def scalars_impl(self, tag, run, output_format): """Result of the form `(body, mime_type)`.""" tensor_events = self._multiplexer.Tensors(run, tag) values = [[tensor_event.wall_time, tensor_event.step, tf.make_ndarray(tensor_event.tensor_proto).item()] for tensor_event in tensor_events] if output_format == OutputFormat.CSV: string_io = StringIO() writer = csv.writer(string_io) writer.writerow(['Wall time', 'Step', 'Value']) writer.writerows(values) return (string_io.getvalue(), 'text/csv') else: return (values, 'application/json')
Example #17
Source File: parse_layer_parameters.py From receptive_field with Apache License 2.0 | 5 votes |
def _pool_kernel_size(node, name_to_node): """Computes kernel size given a TF pooling node. Args: node: Tensorflow node (NodeDef proto). name_to_node: For MaxPoolV2, mapping from node name to NodeDef. Returns: kernel_size_x: Kernel size for horizontal direction (integer). kernel_size_y: Kernel size for vertical direction (integer). Raises: ValueError: If pooling is invalid. """ if node.op == "MaxPoolV2": ksize_input_name = node.input[1] if not ksize_input_name.endswith("/ksize"): raise ValueError("Kernel size name does not end with '/ksize'") ksize_node = name_to_node[ksize_input_name] value = ksize_node.attr["value"] t = tf.make_ndarray(value.tensor) kernel_size_y = t[1] kernel_size_x = t[2] if t[0] != 1: raise ValueError("pool ksize for first dim is not 1") if t[3] != 1: raise ValueError("pool ksize for last dim is not 1") else: ksize = node.attr["ksize"] kernel_size_y = ksize.list.i[1] kernel_size_x = ksize.list.i[2] if ksize.list.i[0] != 1: raise ValueError("pool ksize for first dim is not 1") if ksize.list.i[3] != 1: raise ValueError("pool ksize for last dim is not 1") return kernel_size_x, kernel_size_y
Example #18
Source File: parse_layer_parameters.py From receptive_field with Apache License 2.0 | 5 votes |
def _stride_size(node, name_to_node): """Computes stride size given a TF node. Args: node: Tensorflow node (NodeDef proto). name_to_node: For MaxPoolV2, mapping from variable name Tensorflow node. Returns: stride_x: Stride size for horizontal direction (integer). stride_y: Stride size for vertical direction (integer). Raises: ValueError: If stride input cannot be found in `name_to_node`. """ if node.op == "MaxPoolV2": strides_input_name = node.input[2] if not strides_input_name.endswith("/strides"): raise ValueError("Strides name does not end with '/strides'") strides_node = name_to_node[strides_input_name] value = strides_node.attr["value"] t = tf.make_ndarray(value.tensor) stride_y = t[1] stride_x = t[2] else: strides_attr = node.attr["strides"] logging.vlog(4, "strides_attr = %s", strides_attr) stride_y = strides_attr.list.i[1] stride_x = strides_attr.list.i[2] return stride_x, stride_y
Example #19
Source File: data_loading.py From rl-reliability-metrics with Apache License 2.0 | 5 votes |
def get_summary_value(summary, load_tensors): if load_tensors: proto = summary.tensor_proto value = tf.make_ndarray(proto) return value.item() else: return summary.value
Example #20
Source File: pipeline_invoke_tfserving.py From models with Apache License 2.0 | 5 votes |
def _transform_response(response): # Convert from tf.tensor, np.array, etc. to bytes # TODO: Optimize this to avoid tf.make_ndarray similar to _transform_request() above class_list = tf.make_ndarray(response['classes']).tolist()[0] class_list_str = [clazz.decode('utf-8') for clazz in class_list] score_list = tf.make_ndarray(response['scores']).tolist()[0] return {"classes": class_list_str, "scores": score_list}
Example #21
Source File: converter.py From utensor_cgen with Apache License 2.0 | 5 votes |
def get_generic_value(cls, value): """quantized numpy array is mapped to np.uint8 typed FIXME: I'm not sure if it's a good idea """ np_array = make_ndarray(value) dtype = np_array.dtype if dtype.fields is None: pass elif dtype[0] in [np.uint8, np.int8]: np_array = np_array.astype(dtype[0]) else: raise ValueError('Unsupported numpy dtype: %s' % dtype) return cls.__utensor_generic_type__(np_array=np_array, dtype=dtype)
Example #22
Source File: greeter_plugin.py From tensorboard-plugin-example with Apache License 2.0 | 5 votes |
def _process_string_tensor_event(self, event): """Convert a TensorEvent into a JSON-compatible response.""" string_arr = tf.make_ndarray(event.tensor_proto) text = string_arr.astype(np.dtype(str)).tostring() return { 'wall_time': event.wall_time, 'step': event.step, 'text': text, }
Example #23
Source File: tf_utils.py From video_prediction with MIT License | 5 votes |
def convert_tensor_to_gif_summary(summ): if isinstance(summ, bytes): summary_proto = tf.Summary() summary_proto.ParseFromString(summ) summ = summary_proto summary = tf.Summary() for value in summ.value: tag = value.tag try: images_arr = tf.make_ndarray(value.tensor) except TypeError: summary.value.add(tag=tag, image=value.image) continue if len(images_arr.shape) == 5: images_arr = np.concatenate(list(images_arr), axis=-2) if len(images_arr.shape) != 4: raise ValueError('Tensors must be 4-D or 5-D for gif summary.') channels = images_arr.shape[-1] if channels < 1 or channels > 4: raise ValueError('Tensors must have 1, 2, 3, or 4 color channels for gif summary.') encoded_image_string = ffmpeg_gif.encode_gif(images_arr, fps=4) image = tf.Summary.Image() image.height = images_arr.shape[-3] image.width = images_arr.shape[-2] image.colorspace = channels # 1: grayscale, 2: grayscale + alpha, 3: RGB, 4: RGBA image.encoded_image_string = encoded_image_string summary.value.add(tag=tag, image=image) return summary
Example #24
Source File: tf2_summary.py From RLs with Apache License 2.0 | 5 votes |
def tf2summary2dict(path, tags=[]): serialized_examples = tf.data.TFRecordDataset(path) data = {} for serialized_example in serialized_examples: event = event_pb2.Event.FromString(serialized_example.numpy()) for value in event.summary.value: if value.tag in tags or tags == []: t = tf.make_ndarray(value.tensor) t = float(t) try: data[f'{value.tag}'].append([t, event.step]) except: data[f'{value.tag}'] = [[t, event.step]] pass return data
Example #25
Source File: extract_tensorboard.py From deeprl_signal_control with MIT License | 5 votes |
def extract_scalar(multiplexer, run_name, tag): tensor_events = multiplexer.Tensors(run_name, tag) data = {'wall_time': [], 'step': [], 'value': []} for event in tensor_events: data['wall_time'].append(event.wall_time) data['step'].append(event.step) data['value'].append(tf.make_ndarray(event.tensor_proto).item()) return pd.DataFrame(data)
Example #26
Source File: fetch_events.py From planet with Apache License 2.0 | 5 votes |
def extract_values(reader, tag): events = reader.Tensors('run', tag) steps = [event.step for event in events] times = [event.wall_time for event in events] values = [tf.make_ndarray(event.tensor_proto) for event in events] return steps, times, values
Example #27
Source File: grpc.py From model_server with Apache License 2.0 | 5 votes |
def infer(img, input_tensor, grpc_stub, model_spec_name, model_spec_version, output_tensors): request = predict_pb2.PredictRequest() request.model_spec.name = model_spec_name if model_spec_version is not None: request.model_spec.version.value = model_spec_version print("input shape ", img.shape) request.inputs[input_tensor].CopyFrom( make_tensor_proto(img, shape=list(img.shape))) result = grpc_stub.Predict(request, 10.0) data = {} for output_tensor in output_tensors: data[output_tensor] = make_ndarray(result.outputs[output_tensor]) return data
Example #28
Source File: executor_service_utils.py From federated with Apache License 2.0 | 5 votes |
def deserialize_tensor_value(value_proto): """Deserializes a tensor value from `executor_pb2.Value`. Args: value_proto: An instance of `executor_pb2.Value`. Returns: A tuple `(value, type_spec)`, where `value` is a Numpy array that represents the deserialized value, and `type_spec` is an instance of `tff.TensorType` that represents its type. Raises: TypeError: If the arguments are of the wrong types. ValueError: If the value is malformed. """ py_typecheck.check_type(value_proto, executor_pb2.Value) which_value = value_proto.WhichOneof('value') if which_value != 'tensor': raise ValueError('Not a tensor value: {}'.format(which_value)) # TODO(b/134543154): Find some way of creating the `TensorProto` using a # proper public interface rather than creating a dummy value that we will # overwrite right away. tensor_proto = tf.make_tensor_proto(values=0) if not value_proto.tensor.Unpack(tensor_proto): raise ValueError('Unable to unpack the received tensor value.') tensor_value = tf.make_ndarray(tensor_proto) value_type = computation_types.TensorType( dtype=tf.dtypes.as_dtype(tensor_proto.dtype), shape=tf.TensorShape(tensor_proto.tensor_shape)) return tensor_value, value_type
Example #29
Source File: client.py From hncynic with MIT License | 4 votes |
def __call__(self, title, n=8, timeout=50.0): if self.preprocessor: # FIXME: Tried to reuse the process, but something seems to be buffering preprocessor = subprocess.Popen([self.preprocessor], stdout=subprocess.PIPE, stdin=subprocess.PIPE, stderr=subprocess.DEVNULL) title_pp = preprocessor.communicate((title.strip() + '\n').encode())[0].decode('utf-8') else: title_pp = title title_bpe = self.bpe.segment_tokens(title_pp.strip().lower().split(' ')) #print(title_bpe) request = predict_pb2.PredictRequest() request.model_spec.name = self.model_name request.inputs['tokens'].CopyFrom( tf.make_tensor_proto([title_bpe] * n, shape=(n, len(title_bpe)))) request.inputs['length'].CopyFrom( tf.make_tensor_proto([len(title_bpe)] * n, shape=(n,))) future = self.stub.Predict.future(request, timeout) result = future.result() batch_predictions = tf.make_ndarray(result.outputs["tokens"]) batch_lengths = tf.make_ndarray(result.outputs["length"]) batch_scores = tf.make_ndarray(result.outputs["log_probs"]) hyps = [] for (predictions, lengths, scores) in zip(batch_predictions, batch_lengths, batch_scores): # ignore </s> prediction = predictions[0][:lengths[0]-1] comment = ' '.join([token.decode('utf-8') for token in prediction]) comment = comment.replace('@@ ', '') #comment = comment.replace('<NL>', '\n') # FIXME: Tried to reuse the process, but something seems to be buffering if self.postprocessor: postprocessor = subprocess.Popen([self.postprocessor], stdout=subprocess.PIPE, stdin=subprocess.PIPE, stderr=subprocess.DEVNULL) prediction_ready = postprocessor.communicate((comment + '\n').encode())[0].decode('utf-8') else: prediction_ready = comment hyps.append((prediction_ready.strip(), float(scores[0]))) #hyps.sort(key=lambda hyp: hyp[1] / len(hyp), reverse=True) return hyps
Example #30
Source File: tensorboard_output.py From gym-sawyer with MIT License | 4 votes |
def _dump_tensors(self): if not self._has_recorded_tensor: return layout_categories = [] for scope in self._scope_tensor: chart = [] for name in self._scope_tensor[scope]: chart.append( layout_pb2.Chart( title=name, multiline=layout_pb2.MultilineChartContent( tag=[r'name(?!.*margin.*)'.replace('name', name) ]))) category = layout_pb2.Category(title=scope, chart=chart) layout_categories.append(category) if layout_categories: layout_proto_to_write = layout_pb2.Layout( category=layout_categories) try: # Load former layout_proto from self._layout_writer_dir. multiplexer = event_multiplexer.EventMultiplexer() multiplexer.AddRunsFromDirectory(self._layout_writer_dir) multiplexer.Reload() tensor_events = multiplexer.Tensors( '.', metadata.CONFIG_SUMMARY_TAG) shutil.rmtree(self._layout_writer_dir) # Parse layout proto from disk. string_array = tf.make_ndarray(tensor_events[0].tensor_proto) content = np.asscalar(string_array) layout_proto_from_disk = layout_pb2.Layout() layout_proto_from_disk.ParseFromString( tf.compat.as_bytes(content)) # Merge two layout proto. merged_layout_json = merge( json_format.MessageToJson(layout_proto_from_disk), json_format.MessageToJson(layout_proto_to_write)) merged_layout_proto = layout_pb2.Layout() json_format.Parse(str(merged_layout_json), merged_layout_proto) self._layout_writer = tf.summary.FileWriter( self._layout_writer_dir) layout_summary = summary_lib.custom_scalar_pb( merged_layout_proto) self._layout_writer.add_summary(layout_summary) self._layout_writer.close() except KeyError: # Write the current layout proto into disk # when there is no layout. self._layout_writer = tf.summary.FileWriter( self._layout_writer_dir) layout_summary = summary_lib.custom_scalar_pb( layout_proto_to_write) self._layout_writer.add_summary(layout_summary) self._layout_writer.close()