Python tensorflow.string_to_hash_bucket_fast() Examples
The following are 16
code examples of tensorflow.string_to_hash_bucket_fast().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: inputs.py From vehicle_counting_tensorflow with MIT License | 6 votes |
def _get_features_dict(input_dict): """Extracts features dict from input dict.""" source_id = _replace_empty_string_with_random_number( input_dict[fields.InputDataFields.source_id]) hash_from_source_id = tf.string_to_hash_bucket_fast(source_id, HASH_BINS) features = { fields.InputDataFields.image: input_dict[fields.InputDataFields.image], HASH_KEY: tf.cast(hash_from_source_id, tf.int32), fields.InputDataFields.true_image_shape: input_dict[fields.InputDataFields.true_image_shape], fields.InputDataFields.original_image_spatial_shape: input_dict[fields.InputDataFields.original_image_spatial_shape] } if fields.InputDataFields.original_image in input_dict: features[fields.InputDataFields.original_image] = input_dict[ fields.InputDataFields.original_image] return features
Example #2
Source File: experiment.py From scalable_agent with Apache License 2.0 | 6 votes |
def _instruction(self, instruction): # Split string. splitted = tf.string_split(instruction) dense = tf.sparse_tensor_to_dense(splitted, default_value='') length = tf.reduce_sum(tf.to_int32(tf.not_equal(dense, '')), axis=1) # To int64 hash buckets. Small risk of having collisions. Alternatively, a # vocabulary can be used. num_hash_buckets = 1000 buckets = tf.string_to_hash_bucket_fast(dense, num_hash_buckets) # Embed the instruction. Embedding size 20 seems to be enough. embedding_size = 20 embedding = snt.Embed(num_hash_buckets, embedding_size)(buckets) # Pad to make sure there is at least one output. padding = tf.to_int32(tf.equal(tf.shape(embedding)[1], 0)) embedding = tf.pad(embedding, [[0, 0], [0, padding], [0, 0]]) core = tf.contrib.rnn.LSTMBlockCell(64, name='language_lstm') output, _ = tf.nn.dynamic_rnn(core, embedding, length, dtype=tf.float32) # Return last output. return tf.reverse_sequence(output, length, seq_axis=1)[:, 0]
Example #3
Source File: inputs.py From MAX-Object-Detector with Apache License 2.0 | 6 votes |
def _get_features_dict(input_dict): """Extracts features dict from input dict.""" source_id = _replace_empty_string_with_random_number( input_dict[fields.InputDataFields.source_id]) hash_from_source_id = tf.string_to_hash_bucket_fast(source_id, HASH_BINS) features = { fields.InputDataFields.image: input_dict[fields.InputDataFields.image], HASH_KEY: tf.cast(hash_from_source_id, tf.int32), fields.InputDataFields.true_image_shape: input_dict[fields.InputDataFields.true_image_shape], fields.InputDataFields.original_image_spatial_shape: input_dict[fields.InputDataFields.original_image_spatial_shape] } if fields.InputDataFields.original_image in input_dict: features[fields.InputDataFields.original_image] = input_dict[ fields.InputDataFields.original_image] return features
Example #4
Source File: inputs.py From g-tensorflow-models with Apache License 2.0 | 6 votes |
def _get_features_dict(input_dict): """Extracts features dict from input dict.""" source_id = _replace_empty_string_with_random_number( input_dict[fields.InputDataFields.source_id]) hash_from_source_id = tf.string_to_hash_bucket_fast(source_id, HASH_BINS) features = { fields.InputDataFields.image: input_dict[fields.InputDataFields.image], HASH_KEY: tf.cast(hash_from_source_id, tf.int32), fields.InputDataFields.true_image_shape: input_dict[fields.InputDataFields.true_image_shape], fields.InputDataFields.original_image_spatial_shape: input_dict[fields.InputDataFields.original_image_spatial_shape] } if fields.InputDataFields.original_image in input_dict: features[fields.InputDataFields.original_image] = input_dict[ fields.InputDataFields.original_image] return features
Example #5
Source File: inputs.py From multilabel-image-classification-tensorflow with MIT License | 6 votes |
def _get_features_dict(input_dict): """Extracts features dict from input dict.""" source_id = _replace_empty_string_with_random_number( input_dict[fields.InputDataFields.source_id]) hash_from_source_id = tf.string_to_hash_bucket_fast(source_id, HASH_BINS) features = { fields.InputDataFields.image: input_dict[fields.InputDataFields.image], HASH_KEY: tf.cast(hash_from_source_id, tf.int32), fields.InputDataFields.true_image_shape: input_dict[fields.InputDataFields.true_image_shape], fields.InputDataFields.original_image_spatial_shape: input_dict[fields.InputDataFields.original_image_spatial_shape] } if fields.InputDataFields.original_image in input_dict: features[fields.InputDataFields.original_image] = input_dict[ fields.InputDataFields.original_image] return features
Example #6
Source File: string_to_hash_bucket.py From rlgraph with Apache License 2.0 | 5 votes |
def _graph_fn_call(self, text_inputs): """ Args: text_inputs (SingleDataOp): The Text input to generate a hash bucket for. Returns: tuple: - SingleDataOp: The hash lookup table (int64) that can be used as input to embedding-lookups. - SingleDataOp: The length (number of words) of the longest string in the `text_input` batch. """ if get_backend() == "tf": # Split the input string. split_text_inputs = tf.string_split(source=text_inputs, delimiter=self.delimiter) # Build a tensor of n rows (number of items in text_inputs) words with dense = tf.sparse_tensor_to_dense(sp_input=split_text_inputs, default_value="") length = tf.reduce_sum(input_tensor=tf.cast(x=tf.not_equal(x=dense, y=""), dtype=tf.int32), axis=-1) if self.hash_function == "fast": hash_bucket = tf.string_to_hash_bucket_fast(input=dense, num_buckets=self.num_hash_buckets) else: hash_bucket = tf.string_to_hash_bucket_strong(input=dense, num_buckets=self.num_hash_buckets, key=self.hash_keys) # Int64 is tf's default for `string_to_hash_bucket` operation: Can leave as is. if self.dtype != "int64": hash_bucket = tf.cast(x=hash_bucket, dtype=dtype_(self.dtype)) # Hash-bucket output is always batch-major. hash_bucket._batch_rank = 0 hash_bucket._time_rank = 1 return hash_bucket, length
Example #7
Source File: inputs.py From Person-Detection-and-Tracking with MIT License | 5 votes |
def _get_features_dict(input_dict): """Extracts features dict from input dict.""" hash_from_source_id = tf.string_to_hash_bucket_fast( input_dict[fields.InputDataFields.source_id], HASH_BINS) features = { fields.InputDataFields.image: input_dict[fields.InputDataFields.image], HASH_KEY: tf.cast(hash_from_source_id, tf.int32), fields.InputDataFields.true_image_shape: input_dict[fields.InputDataFields.true_image_shape] } if fields.InputDataFields.original_image in input_dict: features[fields.InputDataFields.original_image] = input_dict[ fields.InputDataFields.original_image] return features
Example #8
Source File: utils.py From realmix with Apache License 2.0 | 5 votes |
def hash_float(x, big_num=1000 * 1000): """Hash a tensor 'x' into a floating point number in the range [0, 1).""" return tf.cast( tf.string_to_hash_bucket_fast(x, big_num), tf.float32 ) / tf.constant(float(big_num))
Example #9
Source File: inputs.py From Gun-Detector with Apache License 2.0 | 5 votes |
def _get_features_dict(input_dict): """Extracts features dict from input dict.""" hash_from_source_id = tf.string_to_hash_bucket_fast( input_dict[fields.InputDataFields.source_id], HASH_BINS) features = { fields.InputDataFields.image: input_dict[fields.InputDataFields.image], HASH_KEY: tf.cast(hash_from_source_id, tf.int32), fields.InputDataFields.true_image_shape: input_dict[fields.InputDataFields.true_image_shape] } if fields.InputDataFields.original_image in input_dict: features[fields.InputDataFields.original_image] = input_dict[ fields.InputDataFields.original_image] return features
Example #10
Source File: string_to_hash_bucket_op_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testStringToOneHashBucketFast(self): with self.test_session(): input_string = tf.placeholder(tf.string) output = tf.string_to_hash_bucket_fast(input_string, 1) result = output.eval(feed_dict={input_string: ['a', 'b', 'c']}) self.assertAllEqual([0, 0, 0], result)
Example #11
Source File: string_to_hash_bucket_op_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testStringToHashBucketsFast(self): with self.test_session(): input_string = tf.placeholder(tf.string) output = tf.string_to_hash_bucket_fast(input_string, 10) result = output.eval(feed_dict={input_string: ['a', 'b', 'c', 'd']}) # Fingerprint64('a') -> 12917804110809363939 -> mod 10 -> 9 # Fingerprint64('b') -> 11795596070477164822 -> mod 10 -> 2 # Fingerprint64('c') -> 11430444447143000872 -> mod 10 -> 2 # Fingerprint64('d') -> 4470636696479570465 -> mod 10 -> 5 self.assertAllEqual([9, 2, 2, 5], result)
Example #12
Source File: inputs.py From ros_tensorflow with Apache License 2.0 | 5 votes |
def _get_features_dict(input_dict): """Extracts features dict from input dict.""" hash_from_source_id = tf.string_to_hash_bucket_fast( input_dict[fields.InputDataFields.source_id], HASH_BINS) features = { fields.InputDataFields.image: input_dict[fields.InputDataFields.image], HASH_KEY: tf.cast(hash_from_source_id, tf.int32), fields.InputDataFields.true_image_shape: input_dict[fields.InputDataFields.true_image_shape] } if fields.InputDataFields.original_image in input_dict: features[fields.InputDataFields.original_image] = input_dict[ fields.InputDataFields.original_image] return features
Example #13
Source File: tf_utils.py From realistic-ssl-evaluation with Apache License 2.0 | 5 votes |
def hash_float(x, big_num=1000 * 1000): """Hash a tensor 'x' into a floating point number in the range [0, 1).""" return tf.cast( tf.string_to_hash_bucket_fast(x, big_num), tf.float32 ) / tf.constant(float(big_num))
Example #14
Source File: inputs.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def _get_features_dict(input_dict): """Extracts features dict from input dict.""" hash_from_source_id = tf.string_to_hash_bucket_fast( input_dict[fields.InputDataFields.source_id], HASH_BINS) features = { fields.InputDataFields.image: input_dict[fields.InputDataFields.image], HASH_KEY: tf.cast(hash_from_source_id, tf.int32), fields.InputDataFields.true_image_shape: input_dict[fields.InputDataFields.true_image_shape] } if fields.InputDataFields.original_image in input_dict: features[fields.InputDataFields.original_image] = input_dict[ fields.InputDataFields.original_image] return features
Example #15
Source File: datasets.py From stereo-magnification with Apache License 2.0 | 5 votes |
def hash_in_range(self, buckets, base, limit): """Return true if the hashed id falls in the range [base, limit).""" hash_bucket = tf.string_to_hash_bucket_fast(self.id, buckets) return tf.logical_and( tf.greater_equal(hash_bucket, base), tf.less(hash_bucket, limit))
Example #16
Source File: utils.py From DeepCTR with Apache License 2.0 | 5 votes |
def call(self, x, mask=None, **kwargs): if x.dtype != tf.string: x = tf.as_string(x, ) try: hash_x = tf.string_to_hash_bucket_fast(x, self.num_buckets if not self.mask_zero else self.num_buckets - 1, name=None) # weak hash except: hash_x = tf.strings.to_hash_bucket_fast(x, self.num_buckets if not self.mask_zero else self.num_buckets - 1, name=None) # weak hash if self.mask_zero: mask_1 = tf.cast(tf.not_equal(x, "0"), 'int64') mask_2 = tf.cast(tf.not_equal(x, "0.0"), 'int64') mask = mask_1 * mask_2 hash_x = (hash_x + 1) * mask return hash_x