Python tensorflow.disable_eager_execution() Examples
The following are 6
code examples of tensorflow.disable_eager_execution().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow
, or try the search function
.
Example #1
Source File: test_abstract_models.py From delira with GNU Affero General Public License v3.0 | 5 votes |
def _setup_tfgraph(*args): import tensorflow as tf tf.disable_eager_execution() tf.reset_default_graph() from delira.models import AbstractTfGraphNetwork from delira.training.backends.tf_graph.utils import \ initialize_uninitialized class Model(AbstractTfGraphNetwork): def __init__(self): super().__init__() self.dense = tf.keras.layers.Dense(1, activation="relu") data = tf.placeholder(shape=[None, 1], dtype=tf.float32) labels = tf.placeholder_with_default( tf.zeros([tf.shape(data)[0], 1]), shape=[None, 1]) preds_train = self.dense(data) preds_eval = self.dense(data) self.inputs["data"] = data self.inputs["labels"] = labels self.outputs_train["pred"] = preds_train self.outputs_eval["pred"] = preds_eval model = Model() initialize_uninitialized(model._sess) return model
Example #2
Source File: test_tf.py From delira with GNU Affero General Public License v3.0 | 5 votes |
def setUp(self) -> None: import tensorflow as tf tf.reset_default_graph() if "_eager" in self._testMethodName: tf.enable_eager_execution() else: tf.disable_eager_execution()
Example #3
Source File: test_adapters.py From tfpyth with MIT License | 5 votes |
def test_pytorch_in_tensorflow_eager_mode(): tf.enable_eager_execution() tfe = tf.contrib.eager def pytorch_expr(a, b): return 3 * a + 4 * b * b x = tfpyth.eager_tensorflow_from_torch(pytorch_expr) assert tf.math.equal(x(tf.convert_to_tensor(1.0), tf.convert_to_tensor(3.0)), 39.0) dx = tfe.gradients_function(x) assert all(tf.math.equal(dx(tf.convert_to_tensor(1.0), tf.convert_to_tensor(3.0)), [3.0, 24.0])) tf.disable_eager_execution()
Example #4
Source File: test_forward.py From incubator-tvm with Apache License 2.0 | 5 votes |
def test_forward_atan2(): """test operator tan """ tf.disable_eager_execution() np_data_1 = np.random.uniform(1, 100, size=(2, 3, 5)).astype(np.float32) np_data_2 = np.random.uniform(1, 100, size=(2, 3, 5)).astype(np.float32) tf.reset_default_graph() in_data_1 = tf.placeholder(tf.float32, (2, 3, 5), name="in_data_1") in_data_2 = tf.placeholder(tf.float32, (2, 3, 5), name="in_data_2") tf.atan2(in_data_1, in_data_2, name="atan2") compare_tf_with_tvm([np_data_1, np_data_2], ['in_data_1:0', 'in_data_2:0'], 'atan2:0')
Example #5
Source File: test_tf_graph.py From delira with GNU Affero General Public License v3.0 | 4 votes |
def setUp(self) -> None: if check_for_tf_graph_backend(): import tensorflow as tf tf.disable_eager_execution() from delira.training import TfGraphExperiment config = DeliraConfig() config.fixed_params = { "model": {}, "training": { "losses": { "CE": tf.losses.softmax_cross_entropy}, "optimizer_cls": tf.train.AdamOptimizer, "optimizer_params": {"learning_rate": 1e-3}, "num_epochs": 2, "metrics": {"mae": mean_absolute_error}, "lr_sched_cls": None, "lr_sched_params": {}} } model_cls = DummyNetworkTfGraph experiment_cls = TfGraphExperiment else: config = None model_cls = None experiment_cls = None len_train = 100 len_test = 50 self._test_cases = [ { "config": config, "network_cls": model_cls, "len_train": len_train, "len_test": len_test, "key_mapping": {"data": "data"}, } ] self._experiment_cls = experiment_cls super().setUp()
Example #6
Source File: test_tf.py From delira with GNU Affero General Public License v3.0 | 4 votes |
def test_load_save(self): import tensorflow as tf tf.disable_eager_execution() from delira.io.tf import load_checkpoint, save_checkpoint from delira.models import AbstractTfGraphNetwork from delira.training.backends import initialize_uninitialized import numpy as np class DummyNetwork(AbstractTfGraphNetwork): def __init__(self, in_channels, n_outputs): super().__init__(in_channels=in_channels, n_outputs=n_outputs) self.net = self._build_model(in_channels, n_outputs) @staticmethod def _build_model(in_channels, n_outputs): return tf.keras.models.Sequential( layers=[ tf.keras.layers.Dense( 64, input_shape=in_channels, bias_initializer='glorot_uniform'), tf.keras.layers.ReLU(), tf.keras.layers.Dense( n_outputs, bias_initializer='glorot_uniform')]) net = DummyNetwork((32,), 1) initialize_uninitialized(net._sess) vars_1 = net._sess.run(tf.global_variables()) save_checkpoint("./model", model=net) net._sess.run(tf.initializers.global_variables()) vars_2 = net._sess.run(tf.global_variables()) load_checkpoint("./model", model=net) vars_3 = net._sess.run(tf.global_variables()) for var_1, var_2 in zip(vars_1, vars_2): with self.subTest(var_1=var_1, var2=var_2): self.assertTrue(np.all(var_1 != var_2)) for var_1, var_3 in zip(vars_1, vars_3): with self.subTest(var_1=var_1, var_3=var_3): self.assertTrue(np.all(var_1 == var_3))