Python tensorflow.python.ops.math_ops.erfc() Examples
The following are 12
code examples of tensorflow.python.ops.math_ops.erfc().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.ops.math_ops
, or try the search function
.
Example #1
Source File: special_math.py From lambda-packs with MIT License | 5 votes |
def ndtr(x, name="ndtr"): """Normal distribution function. Returns the area under the Gaussian probability density function, integrated from minus infinity to x: ``` 1 / x ndtr(x) = ---------- | exp(-0.5 t**2) dt sqrt(2 pi) /-inf = 0.5 (1 + erf(x / sqrt(2))) = 0.5 erfc(x / sqrt(2)) ``` Args: x: `Tensor` of type `float32`, `float64`. name: Python string. A name for the operation (default="ndtr"). Returns: ndtr: `Tensor` with `dtype=x.dtype`. Raises: TypeError: if `x` is not floating-type. """ with ops.name_scope(name, values=[x]): x = ops.convert_to_tensor(x, name="x") if x.dtype.as_numpy_dtype not in [np.float32, np.float64]: raise TypeError( "x.dtype=%s is not handled, see docstring for supported types." % x.dtype) return _ndtr(x)
Example #2
Source File: special_math.py From lambda-packs with MIT License | 5 votes |
def _ndtr(x): """Implements ndtr core logic.""" half_sqrt_2 = constant_op.constant( 0.5 * math.sqrt(2.), dtype=x.dtype, name="half_sqrt_2") w = x * half_sqrt_2 z = math_ops.abs(w) y = array_ops.where(math_ops.less(z, half_sqrt_2), 1. + math_ops.erf(w), array_ops.where(math_ops.greater(w, 0.), 2. - math_ops.erfc(z), math_ops.erfc(z))) return 0.5 * y
Example #3
Source File: core_test.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def setUp(self): super(CoreUnaryOpsTest, self).setUp() self.ops = [ ('abs', operator.abs, math_ops.abs, core.abs_function), ('neg', operator.neg, math_ops.negative, core.neg), # TODO(shoyer): add unary + to core TensorFlow ('pos', None, None, None), ('sign', None, math_ops.sign, core.sign), ('reciprocal', None, math_ops.reciprocal, core.reciprocal), ('square', None, math_ops.square, core.square), ('round', None, math_ops.round, core.round_function), ('sqrt', None, math_ops.sqrt, core.sqrt), ('rsqrt', None, math_ops.rsqrt, core.rsqrt), ('log', None, math_ops.log, core.log), ('exp', None, math_ops.exp, core.exp), ('log', None, math_ops.log, core.log), ('ceil', None, math_ops.ceil, core.ceil), ('floor', None, math_ops.floor, core.floor), ('cos', None, math_ops.cos, core.cos), ('sin', None, math_ops.sin, core.sin), ('tan', None, math_ops.tan, core.tan), ('acos', None, math_ops.acos, core.acos), ('asin', None, math_ops.asin, core.asin), ('atan', None, math_ops.atan, core.atan), ('lgamma', None, math_ops.lgamma, core.lgamma), ('digamma', None, math_ops.digamma, core.digamma), ('erf', None, math_ops.erf, core.erf), ('erfc', None, math_ops.erfc, core.erfc), ('lgamma', None, math_ops.lgamma, core.lgamma), ] total_size = np.prod([v.size for v in self.original_lt.axes.values()]) self.test_lt = core.LabeledTensor( math_ops.cast(self.original_lt, dtypes.float32) / total_size, self.original_lt.axes)
Example #4
Source File: special_math.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def ndtr(x, name="ndtr"): """Normal distribution function. Returns the area under the Gaussian probability density function, integrated from minus infinity to x: ``` 1 / x ndtr(x) = ---------- | exp(-0.5 t^2) dt sqrt(2 pi) /-inf = 0.5 (1 + erf(x / sqrt(2))) = 0.5 erfc(x / sqrt(2)) ``` Args: x: `Tensor` of type `float32`, `float64`. name: Python string. A name for the operation (default="ndtr"). Returns: ndtr: `Tensor` with `dtype=x.dtype`. Raises: TypeError: if `x` is not floating-type. """ with ops.name_scope(name, values=[x]): x = ops.convert_to_tensor(x, name="x") if x.dtype.as_numpy_dtype not in [np.float32, np.float64]: raise TypeError( "x.dtype=%s is not handled, see docstring for supported types." % x.dtype) return _ndtr(x)
Example #5
Source File: special_math.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def _ndtr(x): """Implements ndtr core logic.""" half_sqrt_2 = constant_op.constant( 0.5 * math.sqrt(2.), dtype=x.dtype, name="half_sqrt_2") w = x * half_sqrt_2 z = math_ops.abs(w) y = array_ops.where(math_ops.less(z, half_sqrt_2), 1. + math_ops.erf(w), array_ops.where(math_ops.greater(w, 0.), 2. - math_ops.erfc(z), math_ops.erfc(z))) return 0.5 * y
Example #6
Source File: special_math.py From deep_image_model with Apache License 2.0 | 5 votes |
def ndtr(x, name="ndtr"): """Normal distribution function. Returns the area under the Gaussian probability density function, integrated from minus infinity to x: ``` 1 / x ndtr(x) = ---------- | exp(-0.5 t^2) dt sqrt(2 pi) /-inf = 0.5 (1 + erf(x / sqrt(2))) = 0.5 erfc(x / sqrt(2)) ``` Args: x: `Tensor` of type `float32`, `float64`. name: Python string. A name for the operation (default="ndtr"). Returns: ndtr: `Tensor` with `dtype=x.dtype`. Raises: TypeError: if `x` is not floating-type. """ with ops.name_scope(name, values=[x]): x = ops.convert_to_tensor(x, name="x") if x.dtype.as_numpy_dtype not in [np.float32, np.float64]: raise TypeError( "x.dtype=%s is not handled, see docstring for supported types." % x.dtype) return _ndtr(x)
Example #7
Source File: special_math.py From deep_image_model with Apache License 2.0 | 5 votes |
def _ndtr(x): """Implements ndtr core logic.""" half_sqrt_2 = constant_op.constant( 0.5 * math.sqrt(2.), dtype=x.dtype, name="half_sqrt_2") w = x * half_sqrt_2 z = math_ops.abs(w) y = math_ops.select(math_ops.less(z, half_sqrt_2), 1. + math_ops.erf(w), math_ops.select(math_ops.greater(w, 0.), 2. - math_ops.erfc(z), math_ops.erfc(z))) return 0.5 * y
Example #8
Source File: special_math.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def ndtr(x, name="ndtr"): """Normal distribution function. Returns the area under the Gaussian probability density function, integrated from minus infinity to x: ``` 1 / x ndtr(x) = ---------- | exp(-0.5 t**2) dt sqrt(2 pi) /-inf = 0.5 (1 + erf(x / sqrt(2))) = 0.5 erfc(x / sqrt(2)) ``` Args: x: `Tensor` of type `float32`, `float64`. name: Python string. A name for the operation (default="ndtr"). Returns: ndtr: `Tensor` with `dtype=x.dtype`. Raises: TypeError: if `x` is not floating-type. """ with ops.name_scope(name, values=[x]): x = ops.convert_to_tensor(x, name="x") if x.dtype.as_numpy_dtype not in [np.float32, np.float64]: raise TypeError( "x.dtype=%s is not handled, see docstring for supported types." % x.dtype) return _ndtr(x)
Example #9
Source File: special_math.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def _ndtr(x): """Implements ndtr core logic.""" half_sqrt_2 = constant_op.constant( 0.5 * math.sqrt(2.), dtype=x.dtype, name="half_sqrt_2") w = x * half_sqrt_2 z = math_ops.abs(w) y = array_ops.where(math_ops.less(z, half_sqrt_2), 1. + math_ops.erf(w), array_ops.where(math_ops.greater(w, 0.), 2. - math_ops.erfc(z), math_ops.erfc(z))) return 0.5 * y
Example #10
Source File: core_test.py From keras-lambda with MIT License | 5 votes |
def setUp(self): super(CoreUnaryOpsTest, self).setUp() self.ops = [ ('abs', operator.abs, math_ops.abs, core.abs_function), ('neg', operator.neg, math_ops.negative, core.neg), # TODO(shoyer): add unary + to core TensorFlow ('pos', None, None, None), ('sign', None, math_ops.sign, core.sign), ('reciprocal', None, math_ops.reciprocal, core.reciprocal), ('square', None, math_ops.square, core.square), ('round', None, math_ops.round, core.round_function), ('sqrt', None, math_ops.sqrt, core.sqrt), ('rsqrt', None, math_ops.rsqrt, core.rsqrt), ('log', None, math_ops.log, core.log), ('exp', None, math_ops.exp, core.exp), ('log', None, math_ops.log, core.log), ('ceil', None, math_ops.ceil, core.ceil), ('floor', None, math_ops.floor, core.floor), ('cos', None, math_ops.cos, core.cos), ('sin', None, math_ops.sin, core.sin), ('tan', None, math_ops.tan, core.tan), ('acos', None, math_ops.acos, core.acos), ('asin', None, math_ops.asin, core.asin), ('atan', None, math_ops.atan, core.atan), ('lgamma', None, math_ops.lgamma, core.lgamma), ('digamma', None, math_ops.digamma, core.digamma), ('erf', None, math_ops.erf, core.erf), ('erfc', None, math_ops.erfc, core.erfc), ('lgamma', None, math_ops.lgamma, core.lgamma), ] total_size = np.prod([v.size for v in self.original_lt.axes.values()]) self.test_lt = core.LabeledTensor( math_ops.cast(self.original_lt, dtypes.float32) / total_size, self.original_lt.axes)
Example #11
Source File: special_math.py From keras-lambda with MIT License | 5 votes |
def ndtr(x, name="ndtr"): """Normal distribution function. Returns the area under the Gaussian probability density function, integrated from minus infinity to x: ``` 1 / x ndtr(x) = ---------- | exp(-0.5 t^2) dt sqrt(2 pi) /-inf = 0.5 (1 + erf(x / sqrt(2))) = 0.5 erfc(x / sqrt(2)) ``` Args: x: `Tensor` of type `float32`, `float64`. name: Python string. A name for the operation (default="ndtr"). Returns: ndtr: `Tensor` with `dtype=x.dtype`. Raises: TypeError: if `x` is not floating-type. """ with ops.name_scope(name, values=[x]): x = ops.convert_to_tensor(x, name="x") if x.dtype.as_numpy_dtype not in [np.float32, np.float64]: raise TypeError( "x.dtype=%s is not handled, see docstring for supported types." % x.dtype) return _ndtr(x)
Example #12
Source File: special_math.py From keras-lambda with MIT License | 5 votes |
def _ndtr(x): """Implements ndtr core logic.""" half_sqrt_2 = constant_op.constant( 0.5 * math.sqrt(2.), dtype=x.dtype, name="half_sqrt_2") w = x * half_sqrt_2 z = math_ops.abs(w) y = array_ops.where(math_ops.less(z, half_sqrt_2), 1. + math_ops.erf(w), array_ops.where(math_ops.greater(w, 0.), 2. - math_ops.erfc(z), math_ops.erfc(z))) return 0.5 * y