Python tensorflow.python.ops.math_ops.is_nan() Examples
The following are 12
code examples of tensorflow.python.ops.math_ops.is_nan().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.ops.math_ops
, or try the search function
.
Example #1
Source File: uniform.py From lambda-packs with MIT License | 5 votes |
def _prob(self, x): broadcasted_x = x * array_ops.ones(self.batch_shape_tensor()) return array_ops.where( math_ops.is_nan(broadcasted_x), broadcasted_x, array_ops.where( math_ops.logical_or(broadcasted_x < self.low, broadcasted_x >= self.high), array_ops.zeros_like(broadcasted_x), array_ops.ones_like(broadcasted_x) / self.range()))
Example #2
Source File: sparsify.py From lambda-packs with MIT License | 5 votes |
def _apply_transform(self, input_tensors, **kwargs): """Applies the transformation to the `transform_input`. Args: input_tensors: a list of Tensors representing the input to the Transform. **kwargs: Additional keyword arguments, unused here. Returns: A namedtuple of Tensors representing the transformed output. """ d = input_tensors[0] if self.strip_value is np.nan: strip_hot = math_ops.is_nan(d) else: strip_hot = math_ops.equal(d, array_ops.constant([self.strip_value], dtype=d.dtype)) keep_hot = math_ops.logical_not(strip_hot) length = array_ops.reshape(array_ops.shape(d), []) indices = array_ops.boolean_mask(math_ops.range(length), keep_hot) values = array_ops.boolean_mask(d, keep_hot) sparse_indices = array_ops.reshape( math_ops.cast(indices, dtypes.int64), [-1, 1]) shape = math_ops.cast(array_ops.shape(d), dtypes.int64) # pylint: disable=not-callable return self.return_type( sparse_tensor.SparseTensor(sparse_indices, values, shape))
Example #3
Source File: sparsify.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def _apply_transform(self, input_tensors, **kwargs): """Applies the transformation to the `transform_input`. Args: input_tensors: a list of Tensors representing the input to the Transform. **kwargs: Additional keyword arguments, unused here. Returns: A namedtuple of Tensors representing the transformed output. """ d = input_tensors[0] if self.strip_value is np.nan: strip_hot = math_ops.is_nan(d) else: strip_hot = math_ops.equal(d, array_ops.constant([self.strip_value], dtype=d.dtype)) keep_hot = math_ops.logical_not(strip_hot) length = array_ops.reshape(array_ops.shape(d), []) indices = array_ops.boolean_mask(math_ops.range(length), keep_hot) values = array_ops.boolean_mask(d, keep_hot) sparse_indices = array_ops.reshape( math_ops.cast(indices, dtypes.int64), [-1, 1]) shape = math_ops.cast(array_ops.shape(d), dtypes.int64) # pylint: disable=not-callable return self.return_type( sparse_tensor.SparseTensor(sparse_indices, values, shape))
Example #4
Source File: uniform.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def _prob(self, x): broadcasted_x = x * array_ops.ones(self.batch_shape()) return array_ops.where( math_ops.is_nan(broadcasted_x), broadcasted_x, array_ops.where( math_ops.logical_or(broadcasted_x < self.a, broadcasted_x > self.b), array_ops.zeros_like(broadcasted_x), (1. / self.range()) * array_ops.ones_like(broadcasted_x)))
Example #5
Source File: sparsify.py From deep_image_model with Apache License 2.0 | 5 votes |
def _apply_transform(self, input_tensors, **kwargs): """Applies the transformation to the `transform_input`. Args: input_tensors: a list of Tensors representing the input to the Transform. **kwargs: Additional keyword arguments, unused here. Returns: A namedtuple of Tensors representing the transformed output. """ d = input_tensors[0] if self.strip_value is np.nan: strip_hot = math_ops.is_nan(d) else: strip_hot = math_ops.equal(d, array_ops.constant([self.strip_value], dtype=d.dtype)) keep_hot = math_ops.logical_not(strip_hot) length = array_ops.reshape(array_ops.shape(d), []) indices = array_ops.boolean_mask(math_ops.range(length), keep_hot) values = array_ops.boolean_mask(d, keep_hot) sparse_indices = array_ops.reshape( math_ops.cast(indices, dtypes.int64), [-1, 1]) shape = math_ops.cast(array_ops.shape(d), dtypes.int64) # pylint: disable=not-callable return self.return_type( sparse_tensor.SparseTensor(sparse_indices, values, shape))
Example #6
Source File: uniform.py From deep_image_model with Apache License 2.0 | 5 votes |
def _prob(self, x): broadcasted_x = x * array_ops.ones(self.batch_shape()) return math_ops.select( math_ops.is_nan(broadcasted_x), broadcasted_x, math_ops.select( math_ops.logical_or(broadcasted_x < self.a, broadcasted_x > self.b), array_ops.zeros_like(broadcasted_x), (1. / self.range()) * array_ops.ones_like(broadcasted_x)))
Example #7
Source File: uniform.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def _prob(self, x): broadcasted_x = x * array_ops.ones(self.batch_shape_tensor()) return array_ops.where( math_ops.is_nan(broadcasted_x), broadcasted_x, array_ops.where( math_ops.logical_or(broadcasted_x < self.low, broadcasted_x >= self.high), array_ops.zeros_like(broadcasted_x), array_ops.ones_like(broadcasted_x) / self.range()))
Example #8
Source File: sparsify.py From keras-lambda with MIT License | 5 votes |
def _apply_transform(self, input_tensors, **kwargs): """Applies the transformation to the `transform_input`. Args: input_tensors: a list of Tensors representing the input to the Transform. **kwargs: Additional keyword arguments, unused here. Returns: A namedtuple of Tensors representing the transformed output. """ d = input_tensors[0] if self.strip_value is np.nan: strip_hot = math_ops.is_nan(d) else: strip_hot = math_ops.equal(d, array_ops.constant([self.strip_value], dtype=d.dtype)) keep_hot = math_ops.logical_not(strip_hot) length = array_ops.reshape(array_ops.shape(d), []) indices = array_ops.boolean_mask(math_ops.range(length), keep_hot) values = array_ops.boolean_mask(d, keep_hot) sparse_indices = array_ops.reshape( math_ops.cast(indices, dtypes.int64), [-1, 1]) shape = math_ops.cast(array_ops.shape(d), dtypes.int64) # pylint: disable=not-callable return self.return_type( sparse_tensor.SparseTensor(sparse_indices, values, shape))
Example #9
Source File: uniform.py From keras-lambda with MIT License | 5 votes |
def _prob(self, x): broadcasted_x = x * array_ops.ones(self.batch_shape()) return array_ops.where( math_ops.is_nan(broadcasted_x), broadcasted_x, array_ops.where( math_ops.logical_or(broadcasted_x < self.a, broadcasted_x > self.b), array_ops.zeros_like(broadcasted_x), (1. / self.range()) * array_ops.ones_like(broadcasted_x)))
Example #10
Source File: sampling_ops.py From lambda-packs with MIT License | 4 votes |
def _calculate_acceptance_probabilities(init_probs, target_probs): """Calculate the per-class acceptance rates. Args: init_probs: The class probabilities of the data. target_probs: The desired class proportion in minibatches. Returns: A list of the per-class acceptance probabilities. This method is based on solving the following analysis: Let F be the probability of a rejection (on any example). Let p_i be the proportion of examples in the data in class i (init_probs) Let a_i is the rate the rejection sampler should *accept* class i Let t_i is the target proportion in the minibatches for class i (target_probs) ``` F = sum_i(p_i * (1-a_i)) = 1 - sum_i(p_i * a_i) using sum_i(p_i) = 1 ``` An example with class `i` will be accepted if `k` rejections occur, then an example with class `i` is seen by the rejector, and it is accepted. This can be written as follows: ``` t_i = sum_k=0^inf(F^k * p_i * a_i) = p_i * a_j / (1 - F) using geometric series identity, since 0 <= F < 1 = p_i * a_i / sum_j(p_j * a_j) using F from above ``` Note that the following constraints hold: ``` 0 <= p_i <= 1, sum_i(p_i) = 1 0 <= a_i <= 1 0 <= t_i <= 1, sum_i(t_i) = 1 ``` A solution for a_i in terms of the other variabes is the following: ```a_i = (t_i / p_i) / max_i[t_i / p_i]``` """ # Make list of t_i / p_i. ratio_l = target_probs / init_probs # Replace NaNs with 0s. ratio_l = array_ops.where( math_ops.is_nan(ratio_l), array_ops.zeros_like(ratio_l), ratio_l) # Calculate list of acceptance probabilities. max_ratio = math_ops.reduce_max(ratio_l) return ratio_l / max_ratio
Example #11
Source File: sampling_ops.py From auto-alt-text-lambda-api with MIT License | 4 votes |
def _calculate_acceptance_probabilities(init_probs, target_probs): """Calculate the per-class acceptance rates. Args: init_probs: The class probabilities of the data. target_probs: The desired class proportion in minibatches. Returns: A list of the per-class acceptance probabilities. This method is based on solving the following analysis: Let F be the probability of a rejection (on any example). Let p_i be the proportion of examples in the data in class i (init_probs) Let a_i is the rate the rejection sampler should *accept* class i Let t_i is the target proportion in the minibatches for class i (target_probs) ``` F = sum_i(p_i * (1-a_i)) = 1 - sum_i(p_i * a_i) using sum_i(p_i) = 1 ``` An example with class `i` will be accepted if `k` rejections occur, then an example with class `i` is seen by the rejector, and it is accepted. This can be written as follows: ``` t_i = sum_k=0^inf(F^k * p_i * a_i) = p_i * a_j / (1 - F) using geometric series identity, since 0 <= F < 1 = p_i * a_i / sum_j(p_j * a_j) using F from above ``` Note that the following constraints hold: ``` 0 <= p_i <= 1, sum_i(p_i) = 1 0 <= a_i <= 1 0 <= t_i <= 1, sum_i(t_i) = 1 ``` A solution for a_i in terms of the other variabes is the following: ```a_i = (t_i / p_i) / max_i[t_i / p_i]``` """ # Make list of t_i / p_i. ratio_l = target_probs / init_probs # Replace NaNs with 0s. ratio_l = array_ops.where( math_ops.is_nan(ratio_l), array_ops.zeros_like(ratio_l), ratio_l) # Calculate list of acceptance probabilities. max_ratio = math_ops.reduce_max(ratio_l) return ratio_l / max_ratio
Example #12
Source File: sampling_ops.py From keras-lambda with MIT License | 4 votes |
def _calculate_acceptance_probabilities(init_probs, target_probs): """Calculate the per-class acceptance rates. Args: init_probs: The class probabilities of the data. target_probs: The desired class proportion in minibatches. Returns: A list of the per-class acceptance probabilities. This method is based on solving the following analysis: Let F be the probability of a rejection (on any example). Let p_i be the proportion of examples in the data in class i (init_probs) Let a_i is the rate the rejection sampler should *accept* class i Let t_i is the target proportion in the minibatches for class i (target_probs) ``` F = sum_i(p_i * (1-a_i)) = 1 - sum_i(p_i * a_i) using sum_i(p_i) = 1 ``` An example with class `i` will be accepted if `k` rejections occur, then an example with class `i` is seen by the rejector, and it is accepted. This can be written as follows: ``` t_i = sum_k=0^inf(F^k * p_i * a_i) = p_i * a_j / (1 - F) using geometric series identity, since 0 <= F < 1 = p_i * a_i / sum_j(p_j * a_j) using F from above ``` Note that the following constraints hold: ``` 0 <= p_i <= 1, sum_i(p_i) = 1 0 <= a_i <= 1 0 <= t_i <= 1, sum_i(t_i) = 1 ``` A solution for a_i in terms of the other variabes is the following: ```a_i = (t_i / p_i) / max_i[t_i / p_i]``` """ # Make list of t_i / p_i. ratio_l = target_probs / init_probs # Replace NaNs with 0s. ratio_l = array_ops.where( math_ops.is_nan(ratio_l), array_ops.zeros_like(ratio_l), ratio_l) # Calculate list of acceptance probabilities. max_ratio = math_ops.reduce_max(ratio_l) return ratio_l / max_ratio