Python tensorflow.python.ops.math_ops.truediv() Examples
The following are 22
code examples of tensorflow.python.ops.math_ops.truediv().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.ops.math_ops
, or try the search function
.
Example #1
Source File: metrics_impl.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 6 votes |
def _safe_div(numerator, denominator, name): """Divides two values, returning 0 if the denominator is <= 0. Args: numerator: A real `Tensor`. denominator: A real `Tensor`, with dtype matching `numerator`. name: Name for the returned op. Returns: 0 if `denominator` <= 0, else `numerator` / `denominator` """ return array_ops.where( math_ops.greater(denominator, 0), math_ops.truediv(numerator, denominator), 0, name=name)
Example #2
Source File: metric_ops.py From lambda-packs with MIT License | 6 votes |
def _safe_div(numerator, denominator, name): """Divides two values, returning 0 if the denominator is <= 0. Args: numerator: A real `Tensor`. denominator: A real `Tensor`, with dtype matching `numerator`. name: Name for the returned op. Returns: 0 if `denominator` <= 0, else `numerator` / `denominator` """ return array_ops.where( math_ops.greater(denominator, 0), math_ops.truediv(numerator, denominator), 0, name=name)
Example #3
Source File: dataset_ops.py From lambda-packs with MIT License | 6 votes |
def _estimate_data_distribution(c, num_examples_per_class_seen): """Estimate data distribution as labels are seen. Args: c: The class labels. Type `int32`, shape `[batch_size]`. num_examples_per_class_seen: A `ResourceVariable` containing counts. Type `int64`, shape `[num_classes]`. Returns: dist: The updated distribution. Type `float32`, shape `[num_classes]`. """ num_classes = num_examples_per_class_seen.get_shape()[0].value # Update the class-count based on what labels are seen in # batch. But do this asynchronously to avoid performing a # cross-device round-trip. Just use the cached value. num_examples_per_class_seen = num_examples_per_class_seen.assign_add( math_ops.reduce_sum( array_ops.one_hot(c, num_classes, dtype=dtypes.int64), 0)) init_prob_estimate = math_ops.truediv( num_examples_per_class_seen, math_ops.reduce_sum(num_examples_per_class_seen)) return math_ops.cast(init_prob_estimate, dtypes.float32)
Example #4
Source File: metrics_impl.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def _safe_div(numerator, denominator, name): """Divides two values, returning 0 if the denominator is <= 0. Args: numerator: A real `Tensor`. denominator: A real `Tensor`, with dtype matching `numerator`. name: Name for the returned op. Returns: 0 if `denominator` <= 0, else `numerator` / `denominator` """ return array_ops.where( math_ops.greater(denominator, 0), math_ops.truediv(numerator, denominator), 0, name=name)
Example #5
Source File: metric_ops.py From keras-lambda with MIT License | 6 votes |
def _safe_div(numerator, denominator, name): """Divides two values, returning 0 if the denominator is <= 0. Args: numerator: A real `Tensor`. denominator: A real `Tensor`, with dtype matching `numerator`. name: Name for the returned op. Returns: 0 if `denominator` <= 0, else `numerator` / `denominator` """ return array_ops.where( math_ops.greater(denominator, 0), math_ops.truediv(numerator, denominator), 0, name=name)
Example #6
Source File: metric_ops.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def _safe_div(numerator, denominator, name): """Divides two values, returning 0 if the denominator is <= 0. Args: numerator: A real `Tensor`. denominator: A real `Tensor`, with dtype matching `numerator`. name: Name for the returned op. Returns: 0 if `denominator` <= 0, else `numerator` / `denominator` """ return array_ops.where( math_ops.greater(denominator, 0), math_ops.truediv(numerator, denominator), 0, name=name)
Example #7
Source File: metric_ops.py From deep_image_model with Apache License 2.0 | 6 votes |
def _safe_div(numerator, denominator, name): """Divides two values, returning 0 if the denominator is <= 0. Args: numerator: A real `Tensor`. denominator: A real `Tensor`, with dtype matching `numerator`. name: Name for the returned op. Returns: 0 if `denominator` <= 0, else `numerator` / `denominator` """ return math_ops.select( math_ops.greater(denominator, 0), math_ops.truediv(numerator, denominator), 0, name=name)
Example #8
Source File: metrics_impl.py From keras-lambda with MIT License | 6 votes |
def _safe_div(numerator, denominator, name): """Divides two values, returning 0 if the denominator is <= 0. Args: numerator: A real `Tensor`. denominator: A real `Tensor`, with dtype matching `numerator`. name: Name for the returned op. Returns: 0 if `denominator` <= 0, else `numerator` / `denominator` """ return array_ops.where( math_ops.greater(denominator, 0), math_ops.truediv(numerator, denominator), 0, name=name)
Example #9
Source File: mertric.py From tf.fashionAI with Apache License 2.0 | 6 votes |
def _safe_div(numerator, denominator, name): """Divides two tensors element-wise, returning 0 if the denominator is <= 0. Args: numerator: A real `Tensor`. denominator: A real `Tensor`, with dtype matching `numerator`. name: Name for the returned op. Returns: 0 if `denominator` <= 0, else `numerator` / `denominator` """ t = math_ops.truediv(numerator, denominator) zero = array_ops.zeros_like(t, dtype=denominator.dtype) condition = math_ops.greater(denominator, zero) zero = math_ops.cast(zero, t.dtype) return array_ops.where(condition, t, zero, name=name)
Example #10
Source File: metrics_impl.py From lambda-packs with MIT License | 6 votes |
def _safe_div(numerator, denominator, name): """Divides two values, returning 0 if the denominator is <= 0. Args: numerator: A real `Tensor`. denominator: A real `Tensor`, with dtype matching `numerator`. name: Name for the returned op. Returns: 0 if `denominator` <= 0, else `numerator` / `denominator` """ return array_ops.where( math_ops.greater(denominator, 0), math_ops.truediv(numerator, denominator), 0, name=name)
Example #11
Source File: sampling_ops.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def _estimate_data_distribution(labels, num_classes, smoothing_constant=10): """Estimate data distribution as labels are seen.""" # Variable to track running count of classes. Smooth by a nonzero value to # avoid division-by-zero. Higher values provide more stability at the cost of # slower convergence. if smoothing_constant <= 0: raise ValueError('smoothing_constant must be nonzero.') num_examples_per_class_seen = variables.Variable( initial_value=[smoothing_constant] * num_classes, trainable=False, name='class_count', dtype=dtypes.int64) # Update the class-count based on what labels are seen in batch. num_examples_per_class_seen = num_examples_per_class_seen.assign_add( math_ops.reduce_sum( array_ops.one_hot( labels, num_classes, dtype=dtypes.int64), 0)) # Normalize count into a probability. # NOTE: Without the `+= 0` line below, the test # `testMultiThreadedEstimateDataDistribution` fails. The reason is that # before this line, `num_examples_per_class_seen` is a Tensor that shares a # buffer with an underlying `ref` object. When the `ref` is changed by another # thread, `num_examples_per_class_seen` changes as well. Since this can happen # in the middle of the normalization computation, we get probabilities that # are very far from summing to one. Adding `+= 0` copies the contents of the # tensor to a new buffer, which will be consistent from the start to the end # of the normalization computation. num_examples_per_class_seen += 0 init_prob_estimate = math_ops.truediv( num_examples_per_class_seen, math_ops.reduce_sum(num_examples_per_class_seen)) # Must return float32 (not float64) to agree with downstream `_verify_input` # checks. return math_ops.cast(init_prob_estimate, dtypes.float32)
Example #12
Source File: sampling_ops.py From deep_image_model with Apache License 2.0 | 5 votes |
def _estimate_data_distribution(labels, num_classes, smoothing_constant=10): """Estimate data distribution as labels are seen.""" # Variable to track running count of classes. Smooth by a nonzero value to # avoid division-by-zero. Higher values provide more stability at the cost of # slower convergence. if smoothing_constant <= 0: raise ValueError('smoothing_constant must be nonzero.') num_examples_per_class_seen = variables.Variable( initial_value=[smoothing_constant] * num_classes, trainable=False, name='class_count', dtype=dtypes.int64) # Update the class-count based on what labels are seen in batch. num_examples_per_class_seen = num_examples_per_class_seen.assign_add( math_ops.reduce_sum(array_ops.one_hot(labels, num_classes, dtype=dtypes.int64), 0)) # Normalize count into a probability. # NOTE: Without the `+= 0` line below, the test # `testMultiThreadedEstimateDataDistribution` fails. The reason is that # before this line, `num_examples_per_class_seen` is a Tensor that shares a # buffer with an underlying `ref` object. When the `ref` is changed by another # thread, `num_examples_per_class_seen` changes as well. Since this can happen # in the middle of the normalization computation, we get probabilities that # are very far from summing to one. Adding `+= 0` copies the contents of the # tensor to a new buffer, which will be consistent from the start to the end # of the normalization computation. num_examples_per_class_seen += 0 init_prob_estimate = math_ops.truediv( num_examples_per_class_seen, math_ops.reduce_sum(num_examples_per_class_seen)) # Must return float32 (not float64) to agree with downstream `_verify_input` # checks. return math_ops.cast(init_prob_estimate, dtypes.float32)
Example #13
Source File: histogram_ops.py From tf-slim with Apache License 2.0 | 5 votes |
def _auc_convert_hist_to_auc(hist_true_acc, hist_false_acc, nbins): """Convert histograms to auc. Args: hist_true_acc: `Tensor` holding accumulated histogram of scores for records that were `True`. hist_false_acc: `Tensor` holding accumulated histogram of scores for records that were `False`. nbins: Integer number of bins in the histograms. Returns: Scalar `Tensor` estimating AUC. """ # Note that this follows the "Approximating AUC" section in: # Efficient AUC learning curve calculation, R. R. Bouckaert, # AI'06 Proceedings of the 19th Australian joint conference on Artificial # Intelligence: advances in Artificial Intelligence # Pages 181-191. # Note that the above paper has an error, and we need to re-order our bins to # go from high to low score. # Normalize histogram so we get fraction in each bin. normed_hist_true = math_ops.truediv(hist_true_acc, math_ops.reduce_sum(hist_true_acc)) normed_hist_false = math_ops.truediv(hist_false_acc, math_ops.reduce_sum(hist_false_acc)) # These become delta x, delta y from the paper. delta_y_t = array_ops.reverse_v2(normed_hist_true, [0], name='delta_y_t') delta_x_t = array_ops.reverse_v2(normed_hist_false, [0], name='delta_x_t') # strict_1d_cumsum requires float32 args. delta_y_t = math_ops.cast(delta_y_t, dtypes.float32) delta_x_t = math_ops.cast(delta_x_t, dtypes.float32) # Trapezoidal integration, \int_0^1 0.5 * (y_t + y_{t-1}) dx_t y_t = _strict_1d_cumsum(delta_y_t, nbins) first_trap = delta_x_t[0] * y_t[0] / 2.0 other_traps = delta_x_t[1:] * (y_t[1:] + y_t[:nbins - 1]) / 2.0 return math_ops.add(first_trap, math_ops.reduce_sum(other_traps), name='auc')
Example #14
Source File: sampling_ops.py From lambda-packs with MIT License | 5 votes |
def _estimate_data_distribution(labels, num_classes, smoothing_constant=10): """Estimate data distribution as labels are seen.""" # Variable to track running count of classes. Smooth by a nonzero value to # avoid division-by-zero. Higher values provide more stability at the cost of # slower convergence. if smoothing_constant <= 0: raise ValueError('smoothing_constant must be nonzero.') num_examples_per_class_seen = variable_scope.variable( initial_value=[smoothing_constant] * num_classes, trainable=False, name='class_count', dtype=dtypes.int64) # Update the class-count based on what labels are seen in batch. num_examples_per_class_seen = num_examples_per_class_seen.assign_add( math_ops.reduce_sum( array_ops.one_hot( labels, num_classes, dtype=dtypes.int64), 0)) # Normalize count into a probability. # NOTE: Without the `+= 0` line below, the test # `testMultiThreadedEstimateDataDistribution` fails. The reason is that # before this line, `num_examples_per_class_seen` is a Tensor that shares a # buffer with an underlying `ref` object. When the `ref` is changed by another # thread, `num_examples_per_class_seen` changes as well. Since this can happen # in the middle of the normalization computation, we get probabilities that # are very far from summing to one. Adding `+= 0` copies the contents of the # tensor to a new buffer, which will be consistent from the start to the end # of the normalization computation. num_examples_per_class_seen += 0 init_prob_estimate = math_ops.truediv( num_examples_per_class_seen, math_ops.reduce_sum(num_examples_per_class_seen)) # Must return float32 (not float64) to agree with downstream `_verify_input` # checks. return math_ops.cast(init_prob_estimate, dtypes.float32)
Example #15
Source File: sampling_ops.py From keras-lambda with MIT License | 5 votes |
def _estimate_data_distribution(labels, num_classes, smoothing_constant=10): """Estimate data distribution as labels are seen.""" # Variable to track running count of classes. Smooth by a nonzero value to # avoid division-by-zero. Higher values provide more stability at the cost of # slower convergence. if smoothing_constant <= 0: raise ValueError('smoothing_constant must be nonzero.') num_examples_per_class_seen = variables.Variable( initial_value=[smoothing_constant] * num_classes, trainable=False, name='class_count', dtype=dtypes.int64) # Update the class-count based on what labels are seen in batch. num_examples_per_class_seen = num_examples_per_class_seen.assign_add( math_ops.reduce_sum( array_ops.one_hot( labels, num_classes, dtype=dtypes.int64), 0)) # Normalize count into a probability. # NOTE: Without the `+= 0` line below, the test # `testMultiThreadedEstimateDataDistribution` fails. The reason is that # before this line, `num_examples_per_class_seen` is a Tensor that shares a # buffer with an underlying `ref` object. When the `ref` is changed by another # thread, `num_examples_per_class_seen` changes as well. Since this can happen # in the middle of the normalization computation, we get probabilities that # are very far from summing to one. Adding `+= 0` copies the contents of the # tensor to a new buffer, which will be consistent from the start to the end # of the normalization computation. num_examples_per_class_seen += 0 init_prob_estimate = math_ops.truediv( num_examples_per_class_seen, math_ops.reduce_sum(num_examples_per_class_seen)) # Must return float32 (not float64) to agree with downstream `_verify_input` # checks. return math_ops.cast(init_prob_estimate, dtypes.float32)
Example #16
Source File: histogram_ops.py From keras-lambda with MIT License | 4 votes |
def _auc_convert_hist_to_auc(hist_true_acc, hist_false_acc, nbins): """Convert histograms to auc. Args: hist_true_acc: `Tensor` holding accumulated histogram of scores for records that were `True`. hist_false_acc: `Tensor` holding accumulated histogram of scores for records that were `False`. nbins: Integer number of bins in the histograms. Returns: Scalar `Tensor` estimating AUC. """ # Note that this follows the "Approximating AUC" section in: # Efficient AUC learning curve calculation, R. R. Bouckaert, # AI'06 Proceedings of the 19th Australian joint conference on Artificial # Intelligence: advances in Artificial Intelligence # Pages 181-191. # Note that the above paper has an error, and we need to re-order our bins to # go from high to low score. # Normalize histogram so we get fraction in each bin. normed_hist_true = math_ops.truediv(hist_true_acc, math_ops.reduce_sum(hist_true_acc)) normed_hist_false = math_ops.truediv(hist_false_acc, math_ops.reduce_sum(hist_false_acc)) # These become delta x, delta y from the paper. delta_y_t = array_ops.reverse_v2(normed_hist_true, [0], name='delta_y_t') delta_x_t = array_ops.reverse_v2(normed_hist_false, [0], name='delta_x_t') # strict_1d_cumsum requires float32 args. delta_y_t = math_ops.cast(delta_y_t, dtypes.float32) delta_x_t = math_ops.cast(delta_x_t, dtypes.float32) # Trapezoidal integration, \int_0^1 0.5 * (y_t + y_{t-1}) dx_t y_t = _strict_1d_cumsum(delta_y_t, nbins) first_trap = delta_x_t[0] * y_t[0] / 2.0 other_traps = delta_x_t[1:] * (y_t[1:] + y_t[:nbins - 1]) / 2.0 return math_ops.add(first_trap, math_ops.reduce_sum(other_traps), name='auc') # TODO(langmore) Remove once a faster cumsum (accumulate_sum) Op is available. # Also see if cast to float32 above can be removed with new cumsum. # See: https://github.com/tensorflow/tensorflow/issues/813
Example #17
Source File: moving_averages.py From self-supervision with BSD 3-Clause "New" or "Revised" License | 4 votes |
def weighted_moving_average(value, decay, weight, truediv=True, collections=None, name=None): """Compute the weighted moving average of `value`. Conceptually, the weighted moving average is: `moving_average(value * weight) / moving_average(weight)`, where a moving average updates by the rule `new_value = decay * old_value + (1 - decay) * update` Internally, this Op keeps moving average variables of both `value * weight` and `weight`. Args: value: A numeric `Tensor`. decay: A float `Tensor` or float value. The moving average decay. weight: `Tensor` that keeps the current value of a weight. Shape should be able to multiply `value`. truediv: Boolean, if `True`, dividing by `moving_average(weight)` is floating point division. If `False`, use division implied by dtypes. collections: List of graph collections keys to add the internal variables `value * weight` and `weight` to. Defaults to `[GraphKeys.VARIABLES]`. name: Optional name of the returned operation. Defaults to "WeightedMovingAvg". Returns: An Operation that updates and returns the weighted moving average. """ # Unlike assign_moving_average, the weighted moving average doesn't modify # user-visible variables. It is the ratio of two internal variables, which are # moving averages of the updates. Thus, the signature of this function is # quite different than assign_moving_average. if collections is None: collections = [ops.GraphKeys.VARIABLES] with variable_scope.variable_op_scope( [value, weight, decay], name, "WeightedMovingAvg") as scope: value_x_weight_var = variable_scope.get_variable( "value_x_weight", initializer=init_ops.zeros_initializer(value.get_shape(), dtype=value.dtype), trainable=False, collections=collections) weight_var = variable_scope.get_variable( "weight", initializer=init_ops.zeros_initializer(weight.get_shape(), dtype=weight.dtype), trainable=False, collections=collections) numerator = assign_moving_average(value_x_weight_var, value * weight, decay) denominator = assign_moving_average(weight_var, weight, decay) if truediv: return math_ops.truediv(numerator, denominator, name=scope.name) else: return math_ops.div(numerator, denominator, name=scope.name)
Example #18
Source File: resample.py From deep_image_model with Apache License 2.0 | 4 votes |
def weighted_resample(inputs, weights, overall_rate, scope=None, mean_decay=0.999, warmup=10, seed=None): """Performs an approximate weighted resampling of `inputs`. This method chooses elements from `inputs` where each item's rate of selection is proportional to its value in `weights`, and the average rate of selection across all inputs (and many invocations!) is `overall_rate`. Args: inputs: A list of tensors whose first dimension is `batch_size`. weights: A `[batch_size]`-shaped tensor with each batch member's weight. overall_rate: Desired overall rate of resampling. scope: Scope to use for the op. mean_decay: How quickly to decay the running estimate of the mean weight. warmup: Until the resulting tensor has been evaluated `warmup` times, the resampling menthod uses the true mean over all calls as its weight estimate, rather than a decayed mean. seed: Random seed. Returns: A list of tensors exactly like `inputs`, but with an unknown (and possibly zero) first dimension. A tensor containing the effective resampling rate used for each output. """ # Algorithm: Just compute rates as weights/mean_weight * # overall_rate. This way the the average weight corresponds to the # overall rate, and a weight twice the average has twice the rate, # etc. with ops.name_scope(scope, 'weighted_resample', inputs) as opscope: # First: Maintain a running estimated mean weight, with decay # adjusted (by also maintaining an invocation count) during the # warmup period so that at the beginning, there aren't too many # zeros mixed in, throwing the average off. with variable_scope.variable_scope(scope, 'estimate_mean', inputs): count_so_far = variable_scope.get_local_variable( 'resample_count', initializer=0) estimated_mean = variable_scope.get_local_variable( 'estimated_mean', initializer=0.0) count = count_so_far.assign_add(1) real_decay = math_ops.minimum( math_ops.truediv((count - 1), math_ops.minimum(count, warmup)), mean_decay) batch_mean = math_ops.reduce_mean(weights) mean = moving_averages.assign_moving_average( estimated_mean, batch_mean, real_decay, zero_debias=False) # Then, normalize the weights into rates using the mean weight and # overall target rate: rates = weights * overall_rate / mean results = resample_at_rate([rates] + inputs, rates, scope=opscope, seed=seed, back_prop=False) return (results[1:], results[0])
Example #19
Source File: histogram_ops.py From deep_image_model with Apache License 2.0 | 4 votes |
def _auc_convert_hist_to_auc(hist_true_acc, hist_false_acc, nbins): """Convert histograms to auc. Args: hist_true_acc: `Tensor` holding accumulated histogram of scores for records that were `True`. hist_false_acc: `Tensor` holding accumulated histogram of scores for records that were `False`. nbins: Integer number of bins in the histograms. Returns: Scalar `Tensor` estimating AUC. """ # Note that this follows the "Approximating AUC" section in: # Efficient AUC learning curve calculation, R. R. Bouckaert, # AI'06 Proceedings of the 19th Australian joint conference on Artificial # Intelligence: advances in Artificial Intelligence # Pages 181-191. # Note that the above paper has an error, and we need to re-order our bins to # go from high to low score. # Normalize histogram so we get fraction in each bin. normed_hist_true = math_ops.truediv(hist_true_acc, math_ops.reduce_sum(hist_true_acc)) normed_hist_false = math_ops.truediv(hist_false_acc, math_ops.reduce_sum(hist_false_acc)) # These become delta x, delta y from the paper. delta_y_t = array_ops.reverse(normed_hist_true, [True], name='delta_y_t') delta_x_t = array_ops.reverse(normed_hist_false, [True], name='delta_x_t') # strict_1d_cumsum requires float32 args. delta_y_t = math_ops.cast(delta_y_t, dtypes.float32) delta_x_t = math_ops.cast(delta_x_t, dtypes.float32) # Trapezoidal integration, \int_0^1 0.5 * (y_t + y_{t-1}) dx_t y_t = _strict_1d_cumsum(delta_y_t, nbins) first_trap = delta_x_t[0] * y_t[0] / 2.0 other_traps = delta_x_t[1:] * (y_t[1:] + y_t[:nbins - 1]) / 2.0 return math_ops.add(first_trap, math_ops.reduce_sum(other_traps), name='auc') # TODO(langmore) Remove once a faster cumsum (accumulate_sum) Op is available. # Also see if cast to float32 above can be removed with new cumsum. # See: https://github.com/tensorflow/tensorflow/issues/813
Example #20
Source File: moving_averages.py From deep_image_model with Apache License 2.0 | 4 votes |
def weighted_moving_average(value, decay, weight, truediv=True, collections=None, name=None): """Compute the weighted moving average of `value`. Conceptually, the weighted moving average is: `moving_average(value * weight) / moving_average(weight)`, where a moving average updates by the rule `new_value = decay * old_value + (1 - decay) * update` Internally, this Op keeps moving average variables of both `value * weight` and `weight`. Args: value: A numeric `Tensor`. decay: A float `Tensor` or float value. The moving average decay. weight: `Tensor` that keeps the current value of a weight. Shape should be able to multiply `value`. truediv: Boolean, if `True`, dividing by `moving_average(weight)` is floating point division. If `False`, use division implied by dtypes. collections: List of graph collections keys to add the internal variables `value * weight` and `weight` to. Defaults to `[GraphKeys.GLOBAL_VARIABLES]`. name: Optional name of the returned operation. Defaults to "WeightedMovingAvg". Returns: An Operation that updates and returns the weighted moving average. """ # Unlike assign_moving_average, the weighted moving average doesn't modify # user-visible variables. It is the ratio of two internal variables, which are # moving averages of the updates. Thus, the signature of this function is # quite different than assign_moving_average. if collections is None: collections = [ops.GraphKeys.GLOBAL_VARIABLES] with variable_scope.variable_scope(name, "WeightedMovingAvg", [value, weight, decay]) as scope: value_x_weight_var = variable_scope.get_variable( "value_x_weight", initializer=init_ops.zeros_initializer(value.get_shape(), dtype=value.dtype), trainable=False, collections=collections) weight_var = variable_scope.get_variable( "weight", initializer=init_ops.zeros_initializer(weight.get_shape(), dtype=weight.dtype), trainable=False, collections=collections) numerator = assign_moving_average(value_x_weight_var, value * weight, decay) denominator = assign_moving_average(weight_var, weight, decay) if truediv: return math_ops.truediv(numerator, denominator, name=scope.name) else: return math_ops.div(numerator, denominator, name=scope.name)
Example #21
Source File: histogram_ops.py From auto-alt-text-lambda-api with MIT License | 4 votes |
def _auc_convert_hist_to_auc(hist_true_acc, hist_false_acc, nbins): """Convert histograms to auc. Args: hist_true_acc: `Tensor` holding accumulated histogram of scores for records that were `True`. hist_false_acc: `Tensor` holding accumulated histogram of scores for records that were `False`. nbins: Integer number of bins in the histograms. Returns: Scalar `Tensor` estimating AUC. """ # Note that this follows the "Approximating AUC" section in: # Efficient AUC learning curve calculation, R. R. Bouckaert, # AI'06 Proceedings of the 19th Australian joint conference on Artificial # Intelligence: advances in Artificial Intelligence # Pages 181-191. # Note that the above paper has an error, and we need to re-order our bins to # go from high to low score. # Normalize histogram so we get fraction in each bin. normed_hist_true = math_ops.truediv(hist_true_acc, math_ops.reduce_sum(hist_true_acc)) normed_hist_false = math_ops.truediv(hist_false_acc, math_ops.reduce_sum(hist_false_acc)) # These become delta x, delta y from the paper. delta_y_t = array_ops.reverse_v2(normed_hist_true, [0], name='delta_y_t') delta_x_t = array_ops.reverse_v2(normed_hist_false, [0], name='delta_x_t') # strict_1d_cumsum requires float32 args. delta_y_t = math_ops.cast(delta_y_t, dtypes.float32) delta_x_t = math_ops.cast(delta_x_t, dtypes.float32) # Trapezoidal integration, \int_0^1 0.5 * (y_t + y_{t-1}) dx_t y_t = _strict_1d_cumsum(delta_y_t, nbins) first_trap = delta_x_t[0] * y_t[0] / 2.0 other_traps = delta_x_t[1:] * (y_t[1:] + y_t[:nbins - 1]) / 2.0 return math_ops.add(first_trap, math_ops.reduce_sum(other_traps), name='auc') # TODO(langmore) Remove once a faster cumsum (accumulate_sum) Op is available. # Also see if cast to float32 above can be removed with new cumsum. # See: https://github.com/tensorflow/tensorflow/issues/813
Example #22
Source File: histogram_ops.py From lambda-packs with MIT License | 4 votes |
def _auc_convert_hist_to_auc(hist_true_acc, hist_false_acc, nbins): """Convert histograms to auc. Args: hist_true_acc: `Tensor` holding accumulated histogram of scores for records that were `True`. hist_false_acc: `Tensor` holding accumulated histogram of scores for records that were `False`. nbins: Integer number of bins in the histograms. Returns: Scalar `Tensor` estimating AUC. """ # Note that this follows the "Approximating AUC" section in: # Efficient AUC learning curve calculation, R. R. Bouckaert, # AI'06 Proceedings of the 19th Australian joint conference on Artificial # Intelligence: advances in Artificial Intelligence # Pages 181-191. # Note that the above paper has an error, and we need to re-order our bins to # go from high to low score. # Normalize histogram so we get fraction in each bin. normed_hist_true = math_ops.truediv(hist_true_acc, math_ops.reduce_sum(hist_true_acc)) normed_hist_false = math_ops.truediv(hist_false_acc, math_ops.reduce_sum(hist_false_acc)) # These become delta x, delta y from the paper. delta_y_t = array_ops.reverse_v2(normed_hist_true, [0], name='delta_y_t') delta_x_t = array_ops.reverse_v2(normed_hist_false, [0], name='delta_x_t') # strict_1d_cumsum requires float32 args. delta_y_t = math_ops.cast(delta_y_t, dtypes.float32) delta_x_t = math_ops.cast(delta_x_t, dtypes.float32) # Trapezoidal integration, \int_0^1 0.5 * (y_t + y_{t-1}) dx_t y_t = _strict_1d_cumsum(delta_y_t, nbins) first_trap = delta_x_t[0] * y_t[0] / 2.0 other_traps = delta_x_t[1:] * (y_t[1:] + y_t[:nbins - 1]) / 2.0 return math_ops.add(first_trap, math_ops.reduce_sum(other_traps), name='auc') # TODO(langmore) Remove once a faster cumsum (accumulate_sum) Op is available. # Also see if cast to float32 above can be removed with new cumsum. # See: https://github.com/tensorflow/tensorflow/issues/813