Python tensorflow.python.ops.math_ops._as_indexed_slices() Examples
The following are 8
code examples of tensorflow.python.ops.math_ops._as_indexed_slices().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.ops.math_ops
, or try the search function
.
Example #1
Source File: control_flow_ops.py From lambda-packs with MIT License | 5 votes |
def _AddNextAndBackEdge(m, v): """Add NextIteration and back edge from v to m.""" if isinstance(m, ops.Tensor): v = ops.convert_to_tensor(v) v = _NextIteration(v) m.op._update_input(1, v) # pylint: disable=protected-access elif isinstance(m, ops.IndexedSlices): # pylint: disable=protected-access v = math_ops._as_indexed_slices(v, optimize=False) v = _NextIteration(v) m.values.op._update_input(1, v.values) m.indices.op._update_input(1, v.indices) # pylint: enable=protected-access if m.dense_shape is not None: if v.dense_shape is None: raise ValueError("Must have dense shape: %s" % v.name) m.dense_shape.op._update_input(1, v.dense_shape) elif isinstance(m, sparse_tensor.SparseTensor): if not isinstance(v, sparse_tensor.SparseTensor): raise ValueError("Must be a sparse tensor: %s" % v.name) v = _NextIteration(v) # pylint: disable=protected-access m.values.op._update_input(1, v.values) m.indices.op._update_input(1, v.indices) m.dense_shape.op._update_input(1, v.dense_shape) # pylint: enable=protected-access else: raise TypeError("Type %s not supported" % type(m)) return v
Example #2
Source File: control_flow_ops.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def _AddNextAndBackEdge(m, v): """Add NextIteration and back edge from v to m.""" if isinstance(m, ops.Tensor): v = ops.convert_to_tensor(v) v = _NextIteration(v) m.op._update_input(1, v) # pylint: disable=protected-access elif isinstance(m, ops.IndexedSlices): # pylint: disable=protected-access v = math_ops._as_indexed_slices(v, optimize=False) v = _NextIteration(v) m.values.op._update_input(1, v.values) m.indices.op._update_input(1, v.indices) # pylint: enable=protected-access if m.dense_shape is not None: if v.dense_shape is None: raise ValueError("Must have dense shape: %s" % v.name) m.dense_shape.op._update_input(1, v.dense_shape) elif isinstance(m, sparse_tensor.SparseTensor): if not isinstance(v, sparse_tensor.SparseTensor): raise ValueError("Must be a sparse tensor: %s" % v.name) v = _NextIteration(v) # pylint: disable=protected-access m.values.op._update_input(1, v.values) m.indices.op._update_input(1, v.indices) m.dense_shape.op._update_input(1, v.dense_shape) # pylint: enable=protected-access else: raise TypeError("Type %s not supported" % type(m)) return v
Example #3
Source File: control_flow_ops.py From deep_image_model with Apache License 2.0 | 5 votes |
def _AddNextAndBackEdge(m, v): """Add NextIteration and back edge from v to m.""" if isinstance(m, ops.Tensor): v = ops.convert_to_tensor(v) v = _NextIteration(v) m.op._update_input(1, v) # pylint: disable=protected-access elif isinstance(m, ops.IndexedSlices): # pylint: disable=protected-access v = math_ops._as_indexed_slices(v, optimize=False) v = _NextIteration(v) m.values.op._update_input(1, v.values) m.indices.op._update_input(1, v.indices) # pylint: enable=protected-access if m.dense_shape is not None: if v.dense_shape is None: raise ValueError("Must have dense shape: %s" % v.name) m.dense_shape.op._update_input(1, v.dense_shape) elif isinstance(m, sparse_tensor.SparseTensor): if not isinstance(v, sparse_tensor.SparseTensor): raise ValueError("Must be a sparse tensor: %s" % v.name) v = _NextIteration(v) # pylint: disable=protected-access m.values.op._update_input(1, v.values) m.indices.op._update_input(1, v.indices) m.shape.op._update_input(1, v.shape) # pylint: enable=protected-access else: raise TypeError("Type %s not supported" % type(m)) return v
Example #4
Source File: gradients_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testIndexedSlicesToTensor(self): with self.test_session(): np_val = np.random.rand(4, 4, 4, 4).astype(np.float32) c = constant_op.constant(np_val) c_sparse = math_ops._as_indexed_slices(c) self.assertAllEqual(np_val.shape, c_sparse.dense_shape.eval()) c_dense = math_ops.mul(c_sparse, 1.0) self.assertAllClose(np_val, c_dense.eval())
Example #5
Source File: gradients_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testIndexedSlicesToTensorList(self): with self.test_session(): numpy_list = [] dense_list = [] sparse_list = [] for _ in range(3): np_val = np.random.rand(4, 4, 4, 4).astype(np.float32) c = constant_op.constant(np_val) c_sparse = math_ops._as_indexed_slices(c) numpy_list.append(np_val) dense_list.append(c) sparse_list.append(c_sparse) packed_dense = array_ops.pack(dense_list) packed_sparse = array_ops.pack(sparse_list) self.assertAllClose(packed_dense.eval(), packed_sparse.eval())
Example #6
Source File: gradients_test.py From deep_image_model with Apache License 2.0 | 5 votes |
def testInt64Indices(self): with self.test_session(): np_val = np.random.rand(4, 4, 4, 4).astype(np.float32) c = constant_op.constant(np_val) c_sparse = math_ops._as_indexed_slices(c) c_sparse = ops.IndexedSlices( c_sparse.values, math_ops.cast(c_sparse.indices, dtypes.int64), c_sparse.dense_shape) self.assertAllEqual(np_val.shape, c_sparse.dense_shape.eval()) c_dense = math_ops.mul(c_sparse, 1.0) self.assertAllClose(np_val, c_dense.eval())
Example #7
Source File: control_flow_ops.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def _AddNextAndBackEdge(m, v): """Add NextIteration and back edge from v to m.""" if isinstance(m, ops.Tensor): v = ops.convert_to_tensor(v) v = _NextIteration(v) m.op._update_input(1, v) # pylint: disable=protected-access elif isinstance(m, ops.IndexedSlices): # pylint: disable=protected-access v = math_ops._as_indexed_slices(v, optimize=False) v = _NextIteration(v) m.values.op._update_input(1, v.values) m.indices.op._update_input(1, v.indices) # pylint: enable=protected-access if m.dense_shape is not None: if v.dense_shape is None: raise ValueError("Must have dense shape: %s" % v.name) m.dense_shape.op._update_input(1, v.dense_shape) elif isinstance(m, sparse_tensor.SparseTensor): if not isinstance(v, sparse_tensor.SparseTensor): raise ValueError("Must be a sparse tensor: %s" % v.name) v = _NextIteration(v) # pylint: disable=protected-access m.values.op._update_input(1, v.values) m.indices.op._update_input(1, v.indices) m.dense_shape.op._update_input(1, v.dense_shape) # pylint: enable=protected-access else: raise TypeError("Type %s not supported" % type(m)) return v
Example #8
Source File: control_flow_ops.py From keras-lambda with MIT License | 5 votes |
def _AddNextAndBackEdge(m, v): """Add NextIteration and back edge from v to m.""" if isinstance(m, ops.Tensor): v = ops.convert_to_tensor(v) v = _NextIteration(v) m.op._update_input(1, v) # pylint: disable=protected-access elif isinstance(m, ops.IndexedSlices): # pylint: disable=protected-access v = math_ops._as_indexed_slices(v, optimize=False) v = _NextIteration(v) m.values.op._update_input(1, v.values) m.indices.op._update_input(1, v.indices) # pylint: enable=protected-access if m.dense_shape is not None: if v.dense_shape is None: raise ValueError("Must have dense shape: %s" % v.name) m.dense_shape.op._update_input(1, v.dense_shape) elif isinstance(m, sparse_tensor.SparseTensor): if not isinstance(v, sparse_tensor.SparseTensor): raise ValueError("Must be a sparse tensor: %s" % v.name) v = _NextIteration(v) # pylint: disable=protected-access m.values.op._update_input(1, v.values) m.indices.op._update_input(1, v.indices) m.dense_shape.op._update_input(1, v.dense_shape) # pylint: enable=protected-access else: raise TypeError("Type %s not supported" % type(m)) return v