Python tensorflow.python.ops.math_ops.igamma() Examples
The following are 10
code examples of tensorflow.python.ops.math_ops.igamma().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.python.ops.math_ops
, or try the search function
.
Example #1
Source File: core_test.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def setUp(self): super(FloatBinaryOpsTest, self).setUp() self.ops = [ ('igamma', None, math_ops.igamma, core.igamma), ('igammac', None, math_ops.igammac, core.igammac), ('zeta', None, math_ops.zeta, core.zeta), ('polygamma', None, math_ops.polygamma, core.polygamma), ('maximum', None, math_ops.maximum, core.maximum), ('minimum', None, math_ops.minimum, core.minimum), ('squared_difference', None, math_ops.squared_difference, core.squared_difference), ] total_size = np.prod([v.size for v in self.original_lt.axes.values()]) test_lt = core.LabeledTensor( math_ops.cast(self.original_lt, dtypes.float32) / total_size, self.original_lt.axes) self.test_lt_1 = test_lt self.test_lt_2 = 1.0 - test_lt self.test_lt_1_broadcast = self.test_lt_1.tensor self.test_lt_2_broadcast = self.test_lt_2.tensor self.broadcast_axes = self.test_lt_1.axes
Example #2
Source File: core_test.py From keras-lambda with MIT License | 6 votes |
def setUp(self): super(FloatBinaryOpsTest, self).setUp() self.ops = [ ('igamma', None, math_ops.igamma, core.igamma), ('igammac', None, math_ops.igammac, core.igammac), ('zeta', None, math_ops.zeta, core.zeta), ('polygamma', None, math_ops.polygamma, core.polygamma), ('maximum', None, math_ops.maximum, core.maximum), ('minimum', None, math_ops.minimum, core.minimum), ('squared_difference', None, math_ops.squared_difference, core.squared_difference), ] total_size = np.prod([v.size for v in self.original_lt.axes.values()]) test_lt = core.LabeledTensor( math_ops.cast(self.original_lt, dtypes.float32) / total_size, self.original_lt.axes) self.test_lt_1 = test_lt self.test_lt_2 = 1.0 - test_lt self.test_lt_1_broadcast = self.test_lt_1.tensor self.test_lt_2_broadcast = self.test_lt_2.tensor self.broadcast_axes = self.test_lt_1.axes
Example #3
Source File: gamma.py From lambda-packs with MIT License | 5 votes |
def _cdf(self, x): x = self._maybe_assert_valid_sample(x) # Note that igamma returns the regularized incomplete gamma function, # which is what we want for the CDF. return math_ops.igamma(self.concentration, self.rate * x)
Example #4
Source File: gamma.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def _log_cdf(self, x): x = control_flow_ops.with_dependencies([check_ops.assert_positive(x)] if self.validate_args else [], x) contrib_tensor_util.assert_same_float_dtype(tensors=[x], dtype=self.dtype) # Note that igamma returns the regularized incomplete gamma function, # which is what we want for the CDF. return math_ops.log(math_ops.igamma(self.alpha, self.beta * x))
Example #5
Source File: gamma.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def _cdf(self, x): return math_ops.igamma(self.alpha, self.beta * x)
Example #6
Source File: gamma.py From deep_image_model with Apache License 2.0 | 5 votes |
def _log_cdf(self, x): x = control_flow_ops.with_dependencies([check_ops.assert_positive(x)] if self.validate_args else [], x) contrib_tensor_util.assert_same_float_dtype(tensors=[x], dtype=self.dtype) # Note that igamma returns the regularized incomplete gamma function, # which is what we want for the CDF. return math_ops.log(math_ops.igamma(self.alpha, self.beta * x))
Example #7
Source File: gamma.py From deep_image_model with Apache License 2.0 | 5 votes |
def _cdf(self, x): return math_ops.igamma(self.alpha, self.beta * x)
Example #8
Source File: gamma.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def _cdf(self, x): x = self._maybe_assert_valid_sample(x) # Note that igamma returns the regularized incomplete gamma function, # which is what we want for the CDF. return math_ops.igamma(self.concentration, self.rate * x)
Example #9
Source File: gamma.py From keras-lambda with MIT License | 5 votes |
def _log_cdf(self, x): x = control_flow_ops.with_dependencies([check_ops.assert_positive(x)] if self.validate_args else [], x) contrib_tensor_util.assert_same_float_dtype(tensors=[x], dtype=self.dtype) # Note that igamma returns the regularized incomplete gamma function, # which is what we want for the CDF. return math_ops.log(math_ops.igamma(self.alpha, self.beta * x))
Example #10
Source File: gamma.py From keras-lambda with MIT License | 5 votes |
def _cdf(self, x): return math_ops.igamma(self.alpha, self.beta * x)