Python tensorflow.python.ops.math_ops.not_equal() Examples

The following are 30 code examples of tensorflow.python.ops.math_ops.not_equal(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module tensorflow.python.ops.math_ops , or try the search function .
Example #1
Source File: math_grad.py    From lambda-packs with MIT License 6 votes vote down vote up
def _PowGrad(op, grad):
  """Returns grad * (y*x^(y-1), z*log(x))."""
  x = op.inputs[0]
  y = op.inputs[1]
  z = op.outputs[0]
  sx = array_ops.shape(x)
  sy = array_ops.shape(y)
  rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
  x = math_ops.conj(x)
  y = math_ops.conj(y)
  z = math_ops.conj(z)
  gx = array_ops.reshape(
      math_ops.reduce_sum(grad * y * math_ops.pow(x, y - 1), rx), sx)
  # Avoid false singularity at x = 0
  if x.dtype.is_complex:
    # real(x) < 0 is fine for the complex case
    log_x = array_ops.where(
        math_ops.not_equal(x, 0), math_ops.log(x), array_ops.zeros_like(x))
  else:
    # There's no sensible real value to return if x < 0, so return 0
    log_x = array_ops.where(x > 0, math_ops.log(x), array_ops.zeros_like(x))
  gy = array_ops.reshape(math_ops.reduce_sum(grad * z * log_x, ry), sy)
  return gx, gy 
Example #2
Source File: layers.py    From tensornets with MIT License 6 votes vote down vote up
def dense_to_sparse(tensor, eos_token=0, outputs_collections=None, scope=None):
  """Converts a dense tensor into a sparse tensor.

  An example use would be to convert dense labels to sparse ones
  so that they can be fed to the ctc_loss.

  Args:
     tensor: An `int` `Tensor` to be converted to a `Sparse`.
     eos_token: An integer. It is part of the target label that signifies the
       end of a sentence.
     outputs_collections: Collection to add the outputs.
     scope: Optional scope for name_scope.
  """
  with variable_scope.variable_scope(scope, 'dense_to_sparse', [tensor]) as sc:
    tensor = ops.convert_to_tensor(tensor)
    indices = array_ops.where(
        math_ops.not_equal(tensor, constant_op.constant(eos_token,
                                                        tensor.dtype)))
    values = array_ops.gather_nd(tensor, indices)
    shape = array_ops.shape(tensor, out_type=dtypes.int64)
    outputs = sparse_tensor.SparseTensor(indices, values, shape)
    return utils.collect_named_outputs(outputs_collections, sc.name, outputs) 
Example #3
Source File: math_grad.py    From keras-lambda with MIT License 6 votes vote down vote up
def _PowGrad(op, grad):
  """Returns grad * (y*x^(y-1), z*log(x))."""
  x = op.inputs[0]
  y = op.inputs[1]
  z = op.outputs[0]
  sx = array_ops.shape(x)
  sy = array_ops.shape(y)
  rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
  x = math_ops.conj(x)
  y = math_ops.conj(y)
  z = math_ops.conj(z)
  gx = array_ops.reshape(
      math_ops.reduce_sum(grad * y * math_ops.pow(x, y - 1), rx), sx)
  # Avoid false singularity at x = 0
  if x.dtype.is_complex:
    # real(x) < 0 is fine for the complex case
    log_x = array_ops.where(
        math_ops.not_equal(x, 0), math_ops.log(x), array_ops.zeros_like(x))
  else:
    # There's no sensible real value to return if x < 0, so return 0
    log_x = array_ops.where(x > 0, math_ops.log(x), array_ops.zeros_like(x))
  gy = array_ops.reshape(math_ops.reduce_sum(grad * z * log_x, ry), sy)
  return gx, gy 
Example #4
Source File: math_grad.py    From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License 6 votes vote down vote up
def _PowGrad(op, grad):
  """Returns grad * (y*x^(y-1), z*log(x))."""
  x = op.inputs[0]
  y = op.inputs[1]
  z = op.outputs[0]
  sx = array_ops.shape(x)
  sy = array_ops.shape(y)
  rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
  x = math_ops.conj(x)
  y = math_ops.conj(y)
  z = math_ops.conj(z)
  gx = array_ops.reshape(
      math_ops.reduce_sum(grad * y * math_ops.pow(x, y - 1), rx), sx)
  # Avoid false singularity at x = 0
  if x.dtype.is_complex:
    # real(x) < 0 is fine for the complex case
    log_x = array_ops.where(
        math_ops.not_equal(x, 0), math_ops.log(x), array_ops.zeros_like(x))
  else:
    # There's no sensible real value to return if x < 0, so return 0
    log_x = array_ops.where(x > 0, math_ops.log(x), array_ops.zeros_like(x))
  gy = array_ops.reshape(math_ops.reduce_sum(grad * z * log_x, ry), sy)
  return gx, gy 
Example #5
Source File: math_grad.py    From auto-alt-text-lambda-api with MIT License 6 votes vote down vote up
def _PowGrad(op, grad):
  """Returns grad * (y*x^(y-1), z*log(x))."""
  x = op.inputs[0]
  y = op.inputs[1]
  z = op.outputs[0]
  sx = array_ops.shape(x)
  sy = array_ops.shape(y)
  rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
  x = math_ops.conj(x)
  y = math_ops.conj(y)
  z = math_ops.conj(z)
  gx = array_ops.reshape(
      math_ops.reduce_sum(grad * y * math_ops.pow(x, y - 1), rx), sx)
  # Avoid false singularity at x = 0
  if x.dtype.is_complex:
    # real(x) < 0 is fine for the complex case
    log_x = array_ops.where(
        math_ops.not_equal(x, 0), math_ops.log(x), array_ops.zeros_like(x))
  else:
    # There's no sensible real value to return if x < 0, so return 0
    log_x = array_ops.where(x > 0, math_ops.log(x), array_ops.zeros_like(x))
  gy = array_ops.reshape(math_ops.reduce_sum(grad * z * log_x, ry), sy)
  return gx, gy 
Example #6
Source File: layers.py    From tf-slim with Apache License 2.0 6 votes vote down vote up
def dense_to_sparse(tensor, eos_token=0, outputs_collections=None, scope=None):
  """Converts a dense tensor into a sparse tensor.

  An example use would be to convert dense labels to sparse ones
  so that they can be fed to the ctc_loss.

  Args:
     tensor: An `int` `Tensor` to be converted to a `Sparse`.
     eos_token: An integer. It is part of the target label that signifies the
       end of a sentence.
     outputs_collections: Collection to add the outputs.
     scope: Optional scope for name_scope.
  """
  with variable_scope.variable_scope(scope, 'dense_to_sparse', [tensor]) as sc:
    tensor = ops.convert_to_tensor(tensor)
    indices = array_ops.where(
        math_ops.not_equal(tensor, constant_op.constant(eos_token,
                                                        tensor.dtype)))
    values = array_ops.gather_nd(tensor, indices)
    shape = array_ops.shape(tensor, out_type=dtypes.int64)
    outputs = sparse_tensor.SparseTensor(indices, values, shape)
    return utils.collect_named_outputs(outputs_collections, sc.name, outputs) 
Example #7
Source File: sparse_ops.py    From tf-slim with Apache License 2.0 6 votes vote down vote up
def dense_to_sparse_tensor(dense_tensor, ignore_value=None):
  """Converts dense `Tensor` to `SparseTensor`, dropping `ignore_value` cells.

  Args:
    dense_tensor: A `Tensor`.
    ignore_value: Entries in `dense_tensor` equal to this value will be
      absent from the return `SparseTensor`. If `None`, default value of
      `dense_tensor` dtype will be used (e.g. '' for `str`, 0 for `int`).

  Returns:
    A `SparseTensor` with the same shape as `dense_tensor`.

  Raises:
    ValueError: when `dense_tensor`'s rank is `None`.
  """
  with ops.name_scope("DenseToSparseTensor"):
    dense_tensor = ops.convert_to_tensor(dense_tensor)
    ignore_value = _ignore_value_tensor(dense_tensor.dtype, ignore_value)
    indices = array_ops.where(
        math_ops.not_equal(dense_tensor, ignore_value), name="indices")
    return sparse_tensor.SparseTensor(
        indices=indices,
        values=array_ops.gather_nd(dense_tensor, indices, name="values"),
        dense_shape=array_ops.shape(
            dense_tensor, out_type=dtypes.int64, name="dense_shape")) 
Example #8
Source File: math_grad.py    From deep_image_model with Apache License 2.0 6 votes vote down vote up
def _PowGrad(op, grad):
  """Returns grad * (y*x^(y-1), z*log(x))."""
  x = op.inputs[0]
  y = op.inputs[1]
  z = op.outputs[0]
  sx = array_ops.shape(x)
  sy = array_ops.shape(y)
  rx, ry = gen_array_ops._broadcast_gradient_args(sx, sy)
  x = math_ops.conj(x)
  y = math_ops.conj(y)
  z = math_ops.conj(z)
  gx = array_ops.reshape(
      math_ops.reduce_sum(grad * y * math_ops.pow(x, y - 1), rx), sx)
  # Avoid false singularity at x = 0
  if x.dtype.is_complex:
    # real(x) < 0 is fine for the complex case
    log_x = math_ops.select(
        math_ops.not_equal(x, 0), math_ops.log(x), array_ops.zeros_like(x))
  else:
    # There's no sensible real value to return if x < 0, so return 0
    log_x = math_ops.select(x > 0, math_ops.log(x), array_ops.zeros_like(x))
  gy = array_ops.reshape(
      math_ops.reduce_sum(grad * z * log_x, ry), sy)
  return gx, gy 
Example #9
Source File: core_test.py    From keras-lambda with MIT License 5 votes vote down vote up
def setUp(self):
    super(CoreBinaryOpsTest, self).setUp()

    self.x_probs_broadcast_tensor = array_ops.reshape(
        self.x_probs_lt.tensor, [self.x_size, 1, self.probs_size])

    self.channel_probs_broadcast_tensor = array_ops.reshape(
        self.channel_probs_lt.tensor, [1, self.channel_size, self.probs_size])

    # == and != are not element-wise for tf.Tensor, so they shouldn't be
    # elementwise for LabeledTensor, either.
    self.ops = [
        ('add', operator.add, math_ops.add, core.add),
        ('sub', operator.sub, math_ops.subtract, core.sub),
        ('mul', operator.mul, math_ops.multiply, core.mul),
        ('div', operator.truediv, math_ops.div, core.div),
        ('mod', operator.mod, math_ops.mod, core.mod),
        ('pow', operator.pow, math_ops.pow, core.pow_function),
        ('equal', None, math_ops.equal, core.equal),
        ('less', operator.lt, math_ops.less, core.less),
        ('less_equal', operator.le, math_ops.less_equal, core.less_equal),
        ('not_equal', None, math_ops.not_equal, core.not_equal),
        ('greater', operator.gt, math_ops.greater, core.greater),
        ('greater_equal', operator.ge, math_ops.greater_equal,
         core.greater_equal),
    ]
    self.test_lt_1 = self.x_probs_lt
    self.test_lt_2 = self.channel_probs_lt
    self.test_lt_1_broadcast = self.x_probs_broadcast_tensor
    self.test_lt_2_broadcast = self.channel_probs_broadcast_tensor
    self.broadcast_axes = [self.a0, self.a1, self.a3] 
Example #10
Source File: sequence_queueing_state_saver.py    From keras-lambda with MIT License 5 votes vote down vote up
def _check_multiple_of(value, multiple_of):
  """Checks that value `value` is a non-zero multiple of `multiple_of`.

  Args:
    value: an int32 scalar Tensor.
    multiple_of: an int or int32 scalar Tensor.

  Returns:
    new_value: an int32 scalar Tensor matching `value`, but which includes an
      assertion that `value` is a multiple of `multiple_of`.
  """
  assert isinstance(value, ops.Tensor)
  with ops.control_dependencies([
      control_flow_ops.Assert(
          math_ops.logical_and(
              math_ops.equal(math_ops.mod(value, multiple_of), 0),
              math_ops.not_equal(value, 0)), [
                  string_ops.string_join([
                      "Tensor %s should be a multiple of: " % value.name,
                      string_ops.as_string(multiple_of), ", but saw value: ",
                      string_ops.as_string(value),
                      ". Consider setting pad=True."
                  ])
              ])
  ]):
    new_value = array_ops.identity(value, name="multiple_of_checked")
    return new_value 
Example #11
Source File: backend.py    From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License 5 votes vote down vote up
def not_equal(x, y):
  """Element-wise inequality between two tensors.

  Arguments:
      x: Tensor or variable.
      y: Tensor or variable.

  Returns:
      A bool tensor.
  """
  return math_ops.not_equal(x, y) 
Example #12
Source File: test_forward.py    From incubator-tvm with Apache License 2.0 5 votes vote down vote up
def test_forward_rel_ops():
    t1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    t2 = np.array([[9, 8, 7], [6, 5, 4], [3, 2, 1]])
    _test_forward_rel_op([t1, t2], math_ops.less)
    _test_forward_rel_op([t1, t2], math_ops.greater)
    _test_forward_rel_op([t1, t2], math_ops.less_equal)
    _test_forward_rel_op([t1, t2], math_ops.greater_equal)
    _test_forward_rel_op([t1, t2], math_ops.equal)
    _test_forward_rel_op([t1, t2], math_ops.not_equal)

#######################################################################
# ExpandDims
# ---------- 
Example #13
Source File: test_forward.py    From incubator-tvm with Apache License 2.0 5 votes vote down vote up
def _test_not_equal(data):
    """ One iteration of not_equal"""
    return _test_elemwise(math_ops.not_equal, data)
#######################################################################
# Squared_difference
# ------------------ 
Example #14
Source File: embeddings.py    From tavolo with MIT License 5 votes vote down vote up
def compute_mask(self, inputs, mask=None):
        if not self.mask_zero:
            return None

        return math_ops.not_equal(inputs, 0) 
Example #15
Source File: embeddings.py    From tavolo with MIT License 5 votes vote down vote up
def compute_mask(self, inputs, mask=None):
        if not self.mask_zero:
            return None

        return math_ops.not_equal(inputs, 0) 
Example #16
Source File: decoder_conv.py    From conv-ensemble-str with Apache License 2.0 5 votes vote down vote up
def finalize(self, output, final_state, sequence_lengths):
    # Gather according to beam search result
    # now predicted_ids is [M, N/B]
    predicted_ids = beam_search.gather_tree(output.predicted_ids,
                                            output.beam_parent_ids)
    # TODO(Shancheng): pay attention
    beam_width = output.beam_parent_ids.get_shape().as_list()
    parent_ids = tf.concat([tf.zeros([1, beam_width[-1]], dtype=tf.int32),
                            output.beam_parent_ids[:-1, :]], 0)
    # now logits is [M, N/B, C]
    logits = beam_search.gather_tree(output.logits,
                                     parent_ids)
    # now attention scores is [M, N/B, L, H, W]
    attention_scores = beam_search.gather_tree(output.attention_scores,
                                               parent_ids)
    # orginal length is the length of ungathered logits
    sequence_lengths = math_ops.not_equal(predicted_ids, self.end_token)
    sequence_lengths = tf.to_int32(sequence_lengths)
    sequence_lengths = tf.reduce_sum(sequence_lengths, axis=0) + 1

    # choose the top score item
    predicted_ids = predicted_ids[:, 0:1]
    logits = logits[:, 0:1]
    attention_scores = attention_scores[:, 0:1]
    # mask out
    length = sequence_lengths[0]
    logits = logits[0:length, :]
    attention_scores = attention_scores[0:length, :]

    final_outputs = DecoderOutput(
        logits=self._padding(logits),
        predicted_ids=self._padding(predicted_ids),
        attention_scores=attention_scores)

    return final_outputs, final_state 
Example #17
Source File: sequence_queueing_state_saver.py    From deep_image_model with Apache License 2.0 5 votes vote down vote up
def _check_multiple_of(value, multiple_of):
  """Checks that value `value` is a non-zero multiple of `multiple_of`.

  Args:
    value: an int32 scalar Tensor.
    multiple_of: an int or int32 scalar Tensor.

  Returns:
    new_value: an int32 scalar Tensor matching `value`, but which includes an
      assertion that `value` is a multiple of `multiple_of`.
  """
  assert isinstance(value, ops.Tensor)
  with ops.control_dependencies([
      control_flow_ops.Assert(
          math_ops.logical_and(
              math_ops.equal(math_ops.mod(value, multiple_of), 0),
              math_ops.not_equal(value, 0)),
          [string_ops.string_join(
              ["Tensor %s should be a multiple of: " % value.name,
               string_ops.as_string(multiple_of),
               ", but saw value: ",
               string_ops.as_string(value),
               ". Consider setting pad=True."])])]):
    new_value = array_ops.identity(
        value, name="multiple_of_checked")
    return new_value 
Example #18
Source File: test_forward.py    From training_results_v0.6 with Apache License 2.0 5 votes vote down vote up
def test_forward_rel_ops():
    t1 = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
    t2 = np.array([[9, 8, 7], [6, 5, 4], [3, 2, 1]])
    _test_forward_rel_op([t1, t2], math_ops.less)
    _test_forward_rel_op([t1, t2], math_ops.greater)
    _test_forward_rel_op([t1, t2], math_ops.less_equal)
    _test_forward_rel_op([t1, t2], math_ops.greater_equal)
    _test_forward_rel_op([t1, t2], math_ops.equal)
    _test_forward_rel_op([t1, t2], math_ops.not_equal)


#######################################################################
# Main
# ---- 
Example #19
Source File: core_test.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def setUp(self):
    super(CoreBinaryOpsTest, self).setUp()

    self.x_probs_broadcast_tensor = array_ops.reshape(
        self.x_probs_lt.tensor, [self.x_size, 1, self.probs_size])

    self.channel_probs_broadcast_tensor = array_ops.reshape(
        self.channel_probs_lt.tensor, [1, self.channel_size, self.probs_size])

    # == and != are not element-wise for tf.Tensor, so they shouldn't be
    # elementwise for LabeledTensor, either.
    self.ops = [
        ('add', operator.add, math_ops.add, core.add),
        ('sub', operator.sub, math_ops.subtract, core.sub),
        ('mul', operator.mul, math_ops.multiply, core.mul),
        ('div', operator.truediv, math_ops.div, core.div),
        ('mod', operator.mod, math_ops.mod, core.mod),
        ('pow', operator.pow, math_ops.pow, core.pow_function),
        ('equal', None, math_ops.equal, core.equal),
        ('less', operator.lt, math_ops.less, core.less),
        ('less_equal', operator.le, math_ops.less_equal, core.less_equal),
        ('not_equal', None, math_ops.not_equal, core.not_equal),
        ('greater', operator.gt, math_ops.greater, core.greater),
        ('greater_equal', operator.ge, math_ops.greater_equal,
         core.greater_equal),
    ]
    self.test_lt_1 = self.x_probs_lt
    self.test_lt_2 = self.channel_probs_lt
    self.test_lt_1_broadcast = self.x_probs_broadcast_tensor
    self.test_lt_2_broadcast = self.channel_probs_broadcast_tensor
    self.broadcast_axes = [self.a0, self.a1, self.a3] 
Example #20
Source File: sequence_queueing_state_saver.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def _check_multiple_of(value, multiple_of):
  """Checks that value `value` is a non-zero multiple of `multiple_of`.

  Args:
    value: an int32 scalar Tensor.
    multiple_of: an int or int32 scalar Tensor.

  Returns:
    new_value: an int32 scalar Tensor matching `value`, but which includes an
      assertion that `value` is a multiple of `multiple_of`.
  """
  assert isinstance(value, ops.Tensor)
  with ops.control_dependencies([
      control_flow_ops.Assert(
          math_ops.logical_and(
              math_ops.equal(math_ops.mod(value, multiple_of), 0),
              math_ops.not_equal(value, 0)), [
                  string_ops.string_join([
                      "Tensor %s should be a multiple of: " % value.name,
                      string_ops.as_string(multiple_of), ", but saw value: ",
                      string_ops.as_string(value),
                      ". Consider setting pad=True."
                  ])
              ])
  ]):
    new_value = array_ops.identity(value, name="multiple_of_checked")
    return new_value 
Example #21
Source File: sequence_queueing_state_saver.py    From lambda-packs with MIT License 5 votes vote down vote up
def _check_multiple_of(value, multiple_of):
  """Checks that value `value` is a non-zero multiple of `multiple_of`.

  Args:
    value: an int32 scalar Tensor.
    multiple_of: an int or int32 scalar Tensor.

  Returns:
    new_value: an int32 scalar Tensor matching `value`, but which includes an
      assertion that `value` is a multiple of `multiple_of`.
  """
  assert isinstance(value, ops.Tensor)
  with ops.control_dependencies([
      control_flow_ops.Assert(
          math_ops.logical_and(
              math_ops.equal(math_ops.mod(value, multiple_of), 0),
              math_ops.not_equal(value, 0)), [
                  string_ops.string_join([
                      "Tensor %s should be a multiple of: " % value.name,
                      string_ops.as_string(multiple_of), ", but saw value: ",
                      string_ops.as_string(value),
                      ". Consider setting pad=True."
                  ])
              ])
  ]):
    new_value = array_ops.identity(value, name="multiple_of_checked")
    return new_value 
Example #22
Source File: backend.py    From lambda-packs with MIT License 5 votes vote down vote up
def not_equal(x, y):
  """Element-wise inequality between two tensors.

  Arguments:
      x: Tensor or variable.
      y: Tensor or variable.

  Returns:
      A bool tensor.
  """
  return math_ops.not_equal(x, y) 
Example #23
Source File: sparse_ops.py    From deep_image_model with Apache License 2.0 4 votes vote down vote up
def dense_to_sparse_tensor(dense_tensor, ignore_value=None):
  """Converts a dense Tensor to a SparseTensor, dropping ignore_value cells.

  Args:
    dense_tensor: A `Tensor`.
    ignore_value: Entries in `dense_tensor` equal to this value will be
      absent from the return `SparseTensor`. If `None`, default value of
      dense_tensor's dtype will be used (e.g. '' for `str`, 0 for `int`).

  Returns:
    A `SparseTensor` with the same shape as `dense_tensor`.

  Raises:
    ValueError: when `dense_tensor`'s rank is `None`.
  """
  with ops.name_scope("DenseToSparseTensor"):
    dense_t = ops.convert_to_tensor(dense_tensor)
    if dense_t.get_shape().ndims is None:
      # TODO(b/32318825): Implement dense_to_sparse_tensor for undefined rank.
      raise ValueError("dense_tensor.get_shape() should be defined, got None.")
    if ignore_value is None:
      if dense_t.dtype == dtypes.string:
        # Exception due to TF strings are converted to numpy objects by default.
        ignore_value = ""
      else:
        ignore_value = dense_t.dtype.as_numpy_dtype()
    dense_shape = math_ops.cast(array_ops.shape(dense_t), dtypes.int64)
    indices = array_ops.where(
        math_ops.not_equal(dense_t, math_ops.cast(ignore_value, dense_t.dtype)))
    index_dims = len(dense_t.get_shape())
    # Flattens the tensor and indices for use with gather.
    flat_tensor = array_ops.reshape(dense_t, [-1])
    flat_indices = indices[:, index_dims - 1]
    # Computes the correct flattened indices for 2d (or higher) tensors.
    if index_dims > 1:
      higher_dims = indices[:, :index_dims - 1]
      shape_multipliers = array_ops.pack(
          _multiplier_helper(array_ops.unpack(dense_shape)[1:]))
      offsets = math_ops.reduce_sum(
          math_ops.mul(higher_dims, shape_multipliers), reduction_indices=[1])
      flat_indices = math_ops.add(flat_indices, offsets)
    values = array_ops.gather(flat_tensor, flat_indices)
    return sparse_tensor.SparseTensor(indices, values, dense_shape) 
Example #24
Source File: sparse_ops.py    From auto-alt-text-lambda-api with MIT License 4 votes vote down vote up
def dense_to_sparse_tensor(dense_tensor, ignore_value=None):
  """Converts a dense Tensor to a SparseTensor, dropping ignore_value cells.

  Args:
    dense_tensor: A `Tensor`.
    ignore_value: Entries in `dense_tensor` equal to this value will be
      absent from the return `SparseTensor`. If `None`, default value of
      dense_tensor's dtype will be used (e.g. '' for `str`, 0 for `int`).

  Returns:
    A `SparseTensor` with the same shape as `dense_tensor`.

  Raises:
    ValueError: when `dense_tensor`'s rank is `None`.
  """
  with ops.name_scope("DenseToSparseTensor"):
    dense_t = ops.convert_to_tensor(dense_tensor)
    if dense_t.get_shape().ndims is None:
      # TODO(b/32318825): Implement dense_to_sparse_tensor for undefined rank.
      raise ValueError("dense_tensor.get_shape() should be defined, got None.")
    if ignore_value is None:
      if dense_t.dtype == dtypes.string:
        # Exception due to TF strings are converted to numpy objects by default.
        ignore_value = ""
      else:
        ignore_value = dense_t.dtype.as_numpy_dtype()
    dense_shape = math_ops.cast(array_ops.shape(dense_t), dtypes.int64)
    indices = array_ops.where(
        math_ops.not_equal(dense_t, math_ops.cast(ignore_value, dense_t.dtype)))
    index_dims = len(dense_t.get_shape())
    # Flattens the tensor and indices for use with gather.
    flat_tensor = array_ops.reshape(dense_t, [-1])
    flat_indices = indices[:, index_dims - 1]
    # Computes the correct flattened indices for 2d (or higher) tensors.
    if index_dims > 1:
      higher_dims = indices[:, :index_dims - 1]
      shape_multipliers = array_ops.stack(
          _multiplier_helper(array_ops.unstack(dense_shape)[1:]))
      offsets = math_ops.reduce_sum(
          math_ops.multiply(higher_dims, shape_multipliers),
          reduction_indices=[1])
      flat_indices = math_ops.add(flat_indices, offsets)
    values = array_ops.gather(flat_tensor, flat_indices)
    return sparse_tensor.SparseTensor(indices, values, dense_shape) 
Example #25
Source File: image_ops_impl.py    From auto-alt-text-lambda-api with MIT License 4 votes vote down vote up
def decode_image(contents, channels=None, name=None):
  """Convenience function for `decode_gif`, `decode_jpeg`, and `decode_png`.
  Detects whether an image is a GIF, JPEG, or PNG, and performs the appropriate 
  operation to convert the input bytes `string` into a `Tensor` of type `uint8`.

  Note: `decode_gif` returns a 4-D array `[num_frames, height, width, 3]`, as 
  opposed to `decode_jpeg` and `decode_png`, which return 3-D arrays 
  `[height, width, num_channels]`. Make sure to take this into account when 
  constructing your graph if you are intermixing GIF files with JPEG and/or PNG 
  files.

  Args:
    contents: 0-D `string`. The encoded image bytes.
    channels: An optional `int`. Defaults to `0`. Number of color channels for 
      the decoded image.
    name: A name for the operation (optional)
    
  Returns:
    `Tensor` with type `uint8` with shape `[height, width, num_channels]` for 
      JPEG and PNG images and shape `[num_frames, height, width, 3]` for GIF 
      images.
  """
  with ops.name_scope(name, 'decode_image') as scope:
    if channels not in (None, 0, 1, 3):
      raise ValueError('channels must be in (None, 0, 1, 3)')
    substr = string_ops.substr(contents, 0, 4)

    def _gif():
      # Create assert op to check that bytes are GIF decodable
      is_gif = math_ops.equal(substr, b'\x47\x49\x46\x38', name='is_gif')
      decode_msg = 'Unable to decode bytes as JPEG, PNG, or GIF'
      assert_decode = control_flow_ops.Assert(is_gif, [decode_msg])
      # Create assert to make sure that channels is not set to 1
      # Already checked above that channels is in (None, 0, 1, 3)
      gif_channels = 0 if channels is None else channels
      good_channels = math_ops.not_equal(gif_channels, 1, name='check_channels')
      channels_msg = 'Channels must be in (None, 0, 3) when decoding GIF images'
      assert_channels = control_flow_ops.Assert(good_channels, [channels_msg])
      with ops.control_dependencies([assert_decode, assert_channels]):
        return gen_image_ops.decode_gif(contents)

    def _png():
      return gen_image_ops.decode_png(contents, channels)

    def check_png():
      is_png = math_ops.equal(substr, b'\211PNG', name='is_png')
      return control_flow_ops.cond(is_png, _png, _gif, name='cond_png')

    def _jpeg():
      return gen_image_ops.decode_jpeg(contents, channels)

    is_jpeg = math_ops.equal(substr, b'\xff\xd8\xff\xe0', name='is_jpeg')
    return control_flow_ops.cond(is_jpeg, _jpeg, check_png, name='cond_jpeg') 
Example #26
Source File: lookup_ops.py    From lambda-packs with MIT License 4 votes vote down vote up
def lookup(self, keys, name=None):
    """Looks up `keys` in the table, outputs the corresponding values.

    It assigns out-of-vocabulary keys to buckets based in their hashes.

    Args:
      keys: Keys to look up. May be either a `SparseTensor` or dense `Tensor`.
      name: Optional name for the op.

    Returns:
      A `SparseTensor` if keys are sparse, otherwise a dense `Tensor`.

    Raises:
      TypeError: when `keys` doesn't match the table key data type.
    """
    if keys.dtype != self._key_dtype:
      raise TypeError("Signature mismatch. Keys must be dtype %s, got %s." %
                      (self._key_dtype, keys.dtype))
    values = keys
    if isinstance(keys, sparse_tensor.SparseTensor):
      values = keys.values
    if self._table and (self._table.key_dtype.base_dtype == dtypes.int64):
      values = math_ops.to_int64(values)

    if self._num_oov_buckets == 0:
      ids = self._table.lookup(values, name=name)
    else:
      # TODO(yleon): Consider moving this functionality to its own kernel.
      with ops.name_scope(name, "%s_Lookup" % self.name) as scope:
        str_to_hash_bucket = self._get_string_to_hash_bucket_fn(
            self._hasher_spec)
        buckets = str_to_hash_bucket(
            _as_string(values),
            num_buckets=self._num_oov_buckets,
            name="hash_bucket")
        if self._table:
          ids = self._table.lookup(values)
          buckets = math_ops.add(buckets, self._table.size())
          is_id_non_default = math_ops.not_equal(ids, self._table.default_value)
          ids = array_ops.where(is_id_non_default, ids, buckets, name=scope)
        else:
          ids = buckets
    if isinstance(keys, sparse_tensor.SparseTensor):
      return sparse_tensor.SparseTensor(keys.indices, ids, keys.dense_shape)
    return ids 
Example #27
Source File: lookup_ops.py    From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License 4 votes vote down vote up
def lookup(self, keys, name=None):
    """Looks up `keys` in the table, outputs the corresponding values.

    It assigns out-of-vocabulary keys to buckets based in their hashes.

    Args:
      keys: Keys to look up. May be either a `SparseTensor` or dense `Tensor`.
      name: Optional name for the op.

    Returns:
      A `SparseTensor` if keys are sparse, otherwise a dense `Tensor`.

    Raises:
      TypeError: when `keys` doesn't match the table key data type.
    """
    if keys.dtype != self._key_dtype:
      raise TypeError("Signature mismatch. Keys must be dtype %s, got %s." %
                      (self._key_dtype, keys.dtype))
    values = keys
    if isinstance(keys, sparse_tensor.SparseTensor):
      values = keys.values
    if self._table and (self._table.key_dtype.base_dtype == dtypes.int64):
      values = math_ops.to_int64(values)

    if self._num_oov_buckets == 0:
      ids = self._table.lookup(values, name=name)
    else:
      # TODO(yleon): Consider moving this functionality to its own kernel.
      with ops.name_scope(name, "%s_Lookup" % self.name) as scope:
        str_to_hash_bucket = self._get_string_to_hash_bucket_fn(
            self._hasher_spec)
        buckets = str_to_hash_bucket(
            _as_string(values),
            num_buckets=self._num_oov_buckets,
            name="hash_bucket")
        if self._table:
          ids = self._table.lookup(values)
          buckets = math_ops.add(buckets, self._table.size())
          is_id_non_default = math_ops.not_equal(ids, self._table.default_value)
          ids = array_ops.where(is_id_non_default, ids, buckets, name=scope)
        else:
          ids = buckets
    if isinstance(keys, sparse_tensor.SparseTensor):
      return sparse_tensor.SparseTensor(keys.indices, ids, keys.dense_shape)
    return ids 
Example #28
Source File: feature_column.py    From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License 4 votes vote down vote up
def _to_sparse_input(input_tensor, ignore_value=None):
  """Converts a `Tensor` to a `SparseTensor`, dropping ignore_value cells.

  If `input_tensor` is already a `SparseTensor`, just return it.

  Args:
    input_tensor: A string or integer `Tensor`.
    ignore_value: Entries in `dense_tensor` equal to this value will be
      absent from the resulting `SparseTensor`. If `None`, default value of
      `dense_tensor`'s dtype will be used ('' for `str`, -1 for `int`).

  Returns:
    A `SparseTensor` with the same shape as `input_tensor`.

  Raises:
    ValueError: when `input_tensor`'s rank is `None`.
  """
  input_tensor = sparse_tensor_lib.convert_to_tensor_or_sparse_tensor(
      input_tensor)
  if isinstance(input_tensor, sparse_tensor_lib.SparseTensor):
    return input_tensor
  with ops.name_scope(None, 'to_sparse_input', (input_tensor, ignore_value,)):
    input_rank = input_tensor.get_shape().ndims
    if input_rank is None:
      # TODO(b/32318825): Implement dense_to_sparse_tensor for undefined rank.
      raise ValueError('Undefined input_tensor shape.')
    if ignore_value is None:
      ignore_value = '' if input_tensor.dtype == dtypes.string else -1
    dense_shape = math_ops.cast(array_ops.shape(input_tensor), dtypes.int64)
    indices = array_ops.where(math_ops.not_equal(
        input_tensor, math_ops.cast(ignore_value, input_tensor.dtype)))
    # Flattens the tensor and indices for use with gather.
    flat_tensor = array_ops.reshape(input_tensor, [-1])
    flat_indices = indices[:, input_rank - 1]
    # Computes the correct flattened indices for 2d (or higher) tensors.
    if input_rank > 1:
      higher_dims = indices[:, :input_rank - 1]
      shape_offsets = array_ops.stack(
          _shape_offsets(array_ops.unstack(dense_shape)[1:]))
      offsets = math_ops.reduce_sum(
          math_ops.multiply(higher_dims, shape_offsets),
          reduction_indices=[1])
      flat_indices = math_ops.add(flat_indices, offsets)
    values = array_ops.gather(flat_tensor, flat_indices)
    return sparse_tensor_lib.SparseTensor(indices, values, dense_shape) 
Example #29
Source File: image_ops_impl.py    From keras-lambda with MIT License 4 votes vote down vote up
def decode_image(contents, channels=None, name=None):
  """Convenience function for `decode_gif`, `decode_jpeg`, and `decode_png`.
  Detects whether an image is a GIF, JPEG, or PNG, and performs the appropriate 
  operation to convert the input bytes `string` into a `Tensor` of type `uint8`.

  Note: `decode_gif` returns a 4-D array `[num_frames, height, width, 3]`, as 
  opposed to `decode_jpeg` and `decode_png`, which return 3-D arrays 
  `[height, width, num_channels]`. Make sure to take this into account when 
  constructing your graph if you are intermixing GIF files with JPEG and/or PNG 
  files.

  Args:
    contents: 0-D `string`. The encoded image bytes.
    channels: An optional `int`. Defaults to `0`. Number of color channels for 
      the decoded image.
    name: A name for the operation (optional)
    
  Returns:
    `Tensor` with type `uint8` with shape `[height, width, num_channels]` for 
      JPEG and PNG images and shape `[num_frames, height, width, 3]` for GIF 
      images.
  """
  with ops.name_scope(name, 'decode_image') as scope:
    if channels not in (None, 0, 1, 3):
      raise ValueError('channels must be in (None, 0, 1, 3)')
    substr = string_ops.substr(contents, 0, 4)

    def _gif():
      # Create assert op to check that bytes are GIF decodable
      is_gif = math_ops.equal(substr, b'\x47\x49\x46\x38', name='is_gif')
      decode_msg = 'Unable to decode bytes as JPEG, PNG, or GIF'
      assert_decode = control_flow_ops.Assert(is_gif, [decode_msg])
      # Create assert to make sure that channels is not set to 1
      # Already checked above that channels is in (None, 0, 1, 3)
      gif_channels = 0 if channels is None else channels
      good_channels = math_ops.not_equal(gif_channels, 1, name='check_channels')
      channels_msg = 'Channels must be in (None, 0, 3) when decoding GIF images'
      assert_channels = control_flow_ops.Assert(good_channels, [channels_msg])
      with ops.control_dependencies([assert_decode, assert_channels]):
        return gen_image_ops.decode_gif(contents)

    def _png():
      return gen_image_ops.decode_png(contents, channels)

    def check_png():
      is_png = math_ops.equal(substr, b'\211PNG', name='is_png')
      return control_flow_ops.cond(is_png, _png, _gif, name='cond_png')

    def _jpeg():
      return gen_image_ops.decode_jpeg(contents, channels)

    is_jpeg = math_ops.equal(substr, b'\xff\xd8\xff\xe0', name='is_jpeg')
    return control_flow_ops.cond(is_jpeg, _jpeg, check_png, name='cond_jpeg') 
Example #30
Source File: feature_column.py    From lambda-packs with MIT License 4 votes vote down vote up
def _to_sparse_input(input_tensor, ignore_value=None):
  """Converts a `Tensor` to a `SparseTensor`, dropping ignore_value cells.

  If `input_tensor` is already a `SparseTensor`, just return it.

  Args:
    input_tensor: A string or integer `Tensor`.
    ignore_value: Entries in `dense_tensor` equal to this value will be
      absent from the resulting `SparseTensor`. If `None`, default value of
      `dense_tensor`'s dtype will be used ('' for `str`, -1 for `int`).

  Returns:
    A `SparseTensor` with the same shape as `input_tensor`.

  Raises:
    ValueError: when `input_tensor`'s rank is `None`.
  """
  input_tensor = sparse_tensor_lib.convert_to_tensor_or_sparse_tensor(
      input_tensor)
  if isinstance(input_tensor, sparse_tensor_lib.SparseTensor):
    return input_tensor
  with ops.name_scope(None, 'to_sparse_input', (input_tensor, ignore_value,)):
    input_rank = input_tensor.get_shape().ndims
    if input_rank is None:
      # TODO(b/32318825): Implement dense_to_sparse_tensor for undefined rank.
      raise ValueError('Undefined input_tensor shape.')
    if ignore_value is None:
      ignore_value = '' if input_tensor.dtype == dtypes.string else -1
    dense_shape = math_ops.cast(array_ops.shape(input_tensor), dtypes.int64)
    indices = array_ops.where(math_ops.not_equal(
        input_tensor, math_ops.cast(ignore_value, input_tensor.dtype)))
    # Flattens the tensor and indices for use with gather.
    flat_tensor = array_ops.reshape(input_tensor, [-1])
    flat_indices = indices[:, input_rank - 1]
    # Computes the correct flattened indices for 2d (or higher) tensors.
    if input_rank > 1:
      higher_dims = indices[:, :input_rank - 1]
      shape_offsets = array_ops.stack(
          _shape_offsets(array_ops.unstack(dense_shape)[1:]))
      offsets = math_ops.reduce_sum(
          math_ops.multiply(higher_dims, shape_offsets),
          reduction_indices=[1])
      flat_indices = math_ops.add(flat_indices, offsets)
    values = array_ops.gather(flat_tensor, flat_indices)
    return sparse_tensor_lib.SparseTensor(indices, values, dense_shape)