Python sklearn.random_projection.GaussianRandomProjection() Examples
The following are 7
code examples of sklearn.random_projection.GaussianRandomProjection().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
sklearn.random_projection
, or try the search function
.
Example #1
Source File: projections.py From bonnetal with MIT License | 6 votes |
def random_projection(mat, dim=3): """ Projects a matrix of dimensions m x oldim to m x dim using a random projection """ # include has to be here for multiprocessing problems from sklearn import random_projection as rp if mat.is_cuda: device = torch.device("cuda") else: device = torch.device("cpu") # project m, oldim = mat.shape t = rp.GaussianRandomProjection() proj_mat = torch.tensor(t._make_random_matrix(dim, oldim)) proj_mat = proj_mat.to(device) output = torch.matmul(mat.double(), proj_mat.t()) # check new dim assert(output.shape[0] == m) assert(output.shape[1] == dim) return output
Example #2
Source File: datasets.py From ann-benchmarks with MIT License | 6 votes |
def transform_bag_of_words(filename, n_dimensions, out_fn): import gzip from scipy.sparse import lil_matrix from sklearn.feature_extraction.text import TfidfTransformer from sklearn import random_projection with gzip.open(filename, 'rb') as f: file_content = f.readlines() entries = int(file_content[0]) words = int(file_content[1]) file_content = file_content[3:] # strip first three entries print("building matrix...") A = lil_matrix((entries, words)) for e in file_content: doc, word, cnt = [int(v) for v in e.strip().split()] A[doc - 1, word - 1] = cnt print("normalizing matrix entries with tfidf...") B = TfidfTransformer().fit_transform(A) print("reducing dimensionality...") C = random_projection.GaussianRandomProjection( n_components=n_dimensions).fit_transform(B) X_train, X_test = train_test_split(C) write_output(numpy.array(X_train), numpy.array( X_test), out_fn, 'angular')
Example #3
Source File: feature_extraction.py From open-solution-value-prediction with MIT License | 5 votes |
def __init__(self, **kwargs): super().__init__() self.estimator = sk_rp.GaussianRandomProjection(**kwargs)
Example #4
Source File: gaussian_random_projection.py From lale with Apache License 2.0 | 5 votes |
def __init__(self, n_components='auto', eps=0.1, random_state=None): self._hyperparams = { 'n_components': n_components, 'eps': eps, 'random_state': random_state} self._wrapped_model = Op(**self._hyperparams)
Example #5
Source File: test_sklearn_random_projection.py From sklearn-onnx with MIT License | 5 votes |
def test_gaussian_random_projection_float32(self): rng = np.random.RandomState(42) pt = GaussianRandomProjection(n_components=4) X = rng.rand(10, 5) model = pt.fit(X) assert model.transform(X).shape[1] == 4 model_onnx = convert_sklearn( model, "scikit-learn GaussianRandomProjection", [("inputs", FloatTensorType([None, X.shape[1]]))], target_opset=TARGET_OPSET) self.assertIsNotNone(model_onnx) dump_data_and_model(X.astype(np.float32), model, model_onnx, basename="GaussianRandomProjection")
Example #6
Source File: test_sklearn_random_projection.py From sklearn-onnx with MIT License | 5 votes |
def test_gaussian_random_projection_float64(self): rng = np.random.RandomState(42) pt = GaussianRandomProjection(n_components=4) X = rng.rand(10, 5).astype(np.float64) model = pt.fit(X) model_onnx = to_onnx(model, X[:1], dtype=np.float64, target_opset=TARGET_OPSET) self.assertIsNotNone(model_onnx) dump_data_and_model(X, model, model_onnx, basename="GaussianRandomProjection64")
Example #7
Source File: test_random_projection.py From pandas-ml with BSD 3-Clause "New" or "Revised" License | 5 votes |
def test_objectmapper(self): df = pdml.ModelFrame([]) self.assertIs(df.random_projection.GaussianRandomProjection, rp.GaussianRandomProjection) self.assertIs(df.random_projection.SparseRandomProjection, rp.SparseRandomProjection) self.assertIs(df.random_projection.johnson_lindenstrauss_min_dim, rp.johnson_lindenstrauss_min_dim)