Python matplotlib.cm.gist_earth() Examples
The following are 5
code examples of matplotlib.cm.gist_earth().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
matplotlib.cm
, or try the search function
.
Example #1
Source File: test_colors.py From python3_ios with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_light_source_topo_surface(): """Shades a DEM using different v.e.'s and blend modes.""" fname = cbook.get_sample_data('jacksboro_fault_dem.npz', asfileobj=False) dem = np.load(fname) elev = dem['elevation'] # Get the true cellsize in meters for accurate vertical exaggeration # Convert from decimal degrees to meters dx, dy = dem['dx'], dem['dy'] dx = 111320.0 * dx * np.cos(dem['ymin']) dy = 111320.0 * dy dem.close() ls = mcolors.LightSource(315, 45) cmap = cm.gist_earth fig, axes = plt.subplots(nrows=3, ncols=3) for row, mode in zip(axes, ['hsv', 'overlay', 'soft']): for ax, ve in zip(row, [0.1, 1, 10]): rgb = ls.shade(elev, cmap, vert_exag=ve, dx=dx, dy=dy, blend_mode=mode) ax.imshow(rgb) ax.set(xticks=[], yticks=[])
Example #2
Source File: test_colors.py From coffeegrindsize with MIT License | 6 votes |
def test_light_source_topo_surface(): """Shades a DEM using different v.e.'s and blend modes.""" fname = cbook.get_sample_data('jacksboro_fault_dem.npz', asfileobj=False) dem = np.load(fname) elev = dem['elevation'] # Get the true cellsize in meters for accurate vertical exaggeration # Convert from decimal degrees to meters dx, dy = dem['dx'], dem['dy'] dx = 111320.0 * dx * np.cos(dem['ymin']) dy = 111320.0 * dy dem.close() ls = mcolors.LightSource(315, 45) cmap = cm.gist_earth fig, axes = plt.subplots(nrows=3, ncols=3) for row, mode in zip(axes, ['hsv', 'overlay', 'soft']): for ax, ve in zip(row, [0.1, 1, 10]): rgb = ls.shade(elev, cmap, vert_exag=ve, dx=dx, dy=dy, blend_mode=mode) ax.imshow(rgb) ax.set(xticks=[], yticks=[])
Example #3
Source File: LST.py From python-urbanPlanning with MIT License | 6 votes |
def ThrShow(self,data): font1 = {'family' : 'STXihei', 'weight' : 'normal', 'size' : 50, } fig, ax = plt.subplots(subplot_kw=dict(projection='3d'),figsize=(50,20)) ls = LightSource(data.shape[0], data.shape[1]) rgb = ls.shade(data, cmap=cm.gist_earth, vert_exag=0.1, blend_mode='soft') x=np.array([list(range(data.shape[0]))]*data.shape[1]) print(x.shape,x.T.shape,data.shape) surf = ax.plot_surface(x, x.T, data, rstride=1, cstride=1, facecolors=rgb,linewidth=0, antialiased=False, shade=False,alpha=0.3) fig.colorbar(surf,shrink=0.5,aspect=5) cset = ax.contour(x, x.T, data, zdir='z', offset=37, cmap=cm.coolwarm) cset = ax.contour(x, x.T, data, zdir='x', offset=-30, cmap=cm.coolwarm) cset = ax.contour(x, x.T, data, zdir='y', offset=-30, cmap=cm.coolwarm) plt.show()
Example #4
Source File: test_colors.py From twitter-stock-recommendation with MIT License | 6 votes |
def test_light_source_topo_surface(): """Shades a DEM using different v.e.'s and blend modes.""" fname = cbook.get_sample_data('jacksboro_fault_dem.npz', asfileobj=False) dem = np.load(fname) elev = dem['elevation'] # Get the true cellsize in meters for accurate vertical exaggeration # Convert from decimal degrees to meters dx, dy = dem['dx'], dem['dy'] dx = 111320.0 * dx * np.cos(dem['ymin']) dy = 111320.0 * dy dem.close() ls = mcolors.LightSource(315, 45) cmap = cm.gist_earth fig, axes = plt.subplots(nrows=3, ncols=3) for row, mode in zip(axes, ['hsv', 'overlay', 'soft']): for ax, ve in zip(row, [0.1, 1, 10]): rgb = ls.shade(elev, cmap, vert_exag=ve, dx=dx, dy=dy, blend_mode=mode) ax.imshow(rgb) ax.set(xticks=[], yticks=[])
Example #5
Source File: plotting.py From incubator-sdap-nexus with Apache License 2.0 | 5 votes |
def createLatLonTimeAverageMap3d(res, meta, startTime=None, endTime=None): latSeries = [m[0]['lat'] for m in res][::-1] lonSeries = [m['lon'] for m in res[0]] data = np.zeros((len(latSeries), len(lonSeries))) for t in range(0, len(latSeries)): latSet = res[t] for l in range(0, len(lonSeries)): data[len(latSeries) - t - 1][l] = latSet[l]['avg'] data[data == 0.0] = np.nan x, y = np.meshgrid(latSeries, lonSeries) z = data region = np.s_[0:178, 0:178] x, y, z = x[region], y[region], z[region] fig, ax = plt.subplots(subplot_kw=dict(projection='3d')) ls = LightSource(270, 45) masked_array = np.ma.array(z, mask=np.isnan(z)) rgb = ls.shade(masked_array, cmap=cm.gist_earth) # , vert_exag=0.1, blend_mode='soft') surf = ax.plot_surface(x, y, masked_array, rstride=1, cstride=1, facecolors=rgb, linewidth=0, antialiased=False, shade=False) sio = StringIO() plt.savefig(sio, format='png') return sio.getvalue()