Python tensorflow.core.framework.attr_value_pb2.AttrValue() Examples
The following are 30
code examples of tensorflow.core.framework.attr_value_pb2.AttrValue().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensorflow.core.framework.attr_value_pb2
, or try the search function
.
Example #1
Source File: function.py From deep_image_model with Apache License 2.0 | 6 votes |
def _add_input_array(op, start, limit, dtype, func): """Adds a _ListToArray node in the func for op.inputs[start:limit].""" node = function_pb2.FunctionDef.Node() node.op = "_ListToArray" ret_name = op.name + "_L2A_" + str(start) node.ret.extend([ret_name]) node.arg.extend( [_make_argname_from_tensor_name(x.name) for x in op.inputs[start:limit]]) num = limit - start node.attr["Tin"].CopyFrom( attr_value_pb2.AttrValue(list=attr_value_pb2.AttrValue.ListValue( type=[dtype] * num))) node.attr["T"].CopyFrom(attr_value_pb2.AttrValue(type=dtype)) node.attr["N"].CopyFrom(attr_value_pb2.AttrValue(i=num)) func.node.extend([node]) return ret_name
Example #2
Source File: function.py From deep_image_model with Apache License 2.0 | 6 votes |
def _add_output_list(op, start, limit, dtype_lst, func): """Adds a _ArrayToList node in the func for op.outputs[start:limit].""" ret_name = op.name + "_Lst_" + str(start) + "_" + str(limit) num = limit - start assert len(dtype_lst) == num # Adds an identity node for each element in the array N*T so that # uses of each element can be added easily later. These Identity # will be eliminated before graph execution. for i in xrange(num): node = function_pb2.FunctionDef.Node() node.op = "Identity" node.arg.append(ret_name + ":" + str(i)) node.ret.append(_make_argname_from_tensor_name(op.outputs[i].name)) node.attr["T"].CopyFrom(attr_value_pb2.AttrValue(type=dtype_lst[i])) func.node.extend([node]) return ret_name
Example #3
Source File: jit.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def experimental_jit_scope(compile_ops=True): """Enable or disable JIT compilation of operators within the scope. NOTE: This is an experimental feature. The compilation is a hint and only supported on a best-effort basis. Example usage: with tf.contrib.framework.experimental_jit_scope(): c = tf.matmul(a, b) # compiled with tf.contrib.framework.experimental_jit_scope(compile_ops=False): d = tf.matmul(a, c) # not compiled Args: compile_ops: boolean, whether to enable or disable compilation in the scope. Yields: The current scope, enabling or disabling compilation. """ attrs = {"_XlaCompile": attr_value_pb2.AttrValue(b=compile_ops)} # pylint: disable=protected-access with ops.get_default_graph()._attr_scope(attrs): yield # pylint: enable=protected-access
Example #4
Source File: function.py From lambda-packs with MIT License | 6 votes |
def _parse_kwargs_as_attrs(func_name, **kwargs): """Parses **kwargs into a node's attributes.""" attrs = {} noinline = kwargs.pop("noinline", None) if noinline is not None: attrs["_noinline"] = attr_value_pb2.AttrValue(b=bool(noinline)) compiled = kwargs.pop("compiled", None) separate_compiled_gradients = kwargs.pop("separate_compiled_gradients", None) if compiled is not None: attrs["_XlaCompile"] = attr_value_pb2.AttrValue(b=bool(compiled)) attrs["_XlaSeparateCompiledGradients"] = attr_value_pb2.AttrValue( b=bool(separate_compiled_gradients)) attrs["_XlaScope"] = attr_value_pb2.AttrValue( s=("function_%s" % func_name).encode()) if kwargs: raise ValueError("Unknown keyword arguments: %s" % kwargs.keys()) return attrs
Example #5
Source File: _graph_cvt.py From keras-onnx with MIT License | 6 votes |
def _populate_const_op(output_node, node_name, dtype, data, data_shape): """Creates a Const op. Args: output_node: TensorFlow NodeDef. node_name: str node name. dtype: AttrValue with a populated .type field. data: numpy data value. data_shape: Tuple of integers containing data shape. """ output_node.op = "Const" output_node.name = node_name output_node.attr["dtype"].CopyFrom(dtype) tensor = tensor_util.make_tensor_proto( data, dtype=dtype.type, shape=data_shape) output_node.attr["value"].tensor.CopyFrom(tensor)
Example #6
Source File: test_parse.py From coremltools with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_parse_tensor(self): # Zero-rank tensor attr = attr_value.AttrValue() attr.tensor.version_number = 1 attr.tensor.dtype = types.DataType.DT_INT32 t = parse.parse_attr(attr) self.assertTrue(isinstance(t, mil_types.int32)) self.assertEqual(0, t.val) # Non-zero rank attr = attr_value.AttrValue() attr.tensor.version_number = 1 attr.tensor.dtype = types.DataType.DT_INT32 shaped_attr = self._attr_with_shape([(1, "outer"), (2, "middle"), (3, "inner")]) attr.tensor.tensor_shape.dim.extend(shaped_attr.shape.dim) attr.tensor.int_val.extend([55, 56, 57]) t = parse.parse_attr(attr) self.assertEqual([55, 56, 57], t.val.tolist()) self.assertEqual("tensor", mil_types.get_type_info(t).name) # Note that the result of t.get_primitive() is a function that returns a type # rather than an instance of that type as it is when the tensor has rank zero. self.assertTrue(isinstance(t.get_primitive()(), mil_types.int32)) self.assertEqual((1, 2, 3), t.get_shape())
Example #7
Source File: _graph_cvt.py From keras-onnx with MIT License | 6 votes |
def _populate_if_op(output_node, input_node, function_data): """Updates the type attributes and function names of If or StatelessIf. Args: output_node: TensorFlow NodeDef. input_node: TensorFlow NodeDef. function_data: Map of function names to the list of types and shapes that correspond with the function arguments. """ output_node.CopyFrom(input_node) then_func = input_node.attr["then_branch"].func.name output_node.attr["then_branch"].func.name = _get_new_function_name(then_func) output_node.attr["else_branch"].func.name = _get_new_function_name( input_node.attr["else_branch"].func.name) output_node.attr["Tin"].list.CopyFrom( attr_value_pb2.AttrValue.ListValue( type=function_data[then_func]["types"]))
Example #8
Source File: _graph_cvt.py From keras-onnx with MIT License | 6 votes |
def _populate_while_op(output_node, input_node, function_data): """Updates the type attributes and function names of While or StatelessWhile. Args: output_node: TensorFlow NodeDef. input_node: TensorFlow NodeDef. function_data: Map of function names to the list of types and shapes that correspond with the function arguments. """ output_node.CopyFrom(input_node) cond_func = input_node.attr["cond"].func.name output_node.attr["cond"].func.name = _get_new_function_name(cond_func) output_node.attr["body"].func.name = _get_new_function_name( input_node.attr["body"].func.name) output_node.attr["T"].list.CopyFrom( attr_value_pb2.AttrValue.ListValue( type=function_data[cond_func]["types"])) output_node.attr["output_shapes"].list.CopyFrom( attr_value_pb2.AttrValue.ListValue( shape=function_data[cond_func]["shapes"]))
Example #9
Source File: ops_test.py From deep_image_model with Apache License 2.0 | 6 votes |
def testLabelMap(self): with self.test_session() as sess: a1 = self._get_test_attrs() with sess.graph._attr_scope( {"_A": attr_value_pb2.AttrValue(s=compat.as_bytes("foo"))}): a2 = self._get_test_attrs() with sess.graph._attr_scope( {"_A": None, "_B": attr_value_pb2.AttrValue(s=compat.as_bytes("bar"))}): a3 = self._get_test_attrs() with sess.graph._attr_scope( {"_A": attr_value_pb2.AttrValue(s=compat.as_bytes("baz"))}): a4 = self._get_test_attrs() a5 = self._get_test_attrs() a6 = self._get_test_attrs() a7 = self._get_test_attrs() self.assertAllEqual((None, None), a1) self.assertAllEqual(("foo", None), a2) self.assertAllEqual((None, "bar"), a3) self.assertAllEqual(("baz", "bar"), a4) self.assertAllEqual((None, "bar"), a5) self.assertAllEqual(("foo", None), a6) self.assertAllEqual((None, None), a7)
Example #10
Source File: quantize_graph.py From sketch-to-react-native with MIT License | 5 votes |
def set_attr_int(node, key, value): try: node.attr[key].CopyFrom(attr_value_pb2.AttrValue(i=value)) except KeyError: pass
Example #11
Source File: quantize_graph.py From sketch-to-react-native with MIT License | 5 votes |
def set_attr_shape(node, key, value): try: node.attr[key].CopyFrom( attr_value_pb2.AttrValue(shape=tensor_shape.as_shape(value).as_proto())) except KeyError: pass
Example #12
Source File: quantize_graph.py From sketch-to-react-native with MIT License | 5 votes |
def set_attr_float(node, key, value): try: node.attr[key].CopyFrom(attr_value_pb2.AttrValue(f=value)) except KeyError: pass
Example #13
Source File: gradients_impl.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def _MaybeCompile(scope, op, func, grad_fn): """Compile the calculation in grad_fn if op was marked as compiled.""" scope = scope.rstrip("/").replace("/", "_") if func is not None: xla_compile = func.definition.attr["_XlaCompile"].b xla_separate_compiled_gradients = func.definition.attr[ "_XlaSeparateCompiledGradients"].b xla_scope = func.definition.attr["_XlaScope"].s.decode() else: try: xla_compile = op.get_attr("_XlaCompile") xla_separate_compiled_gradients = op.get_attr( "_XlaSeparateCompiledGradients") xla_scope = op.get_attr("_XlaScope").decode() except ValueError: return grad_fn() # Exit early if not xla_compile: return grad_fn() # Exit early # If the gradients are supposed to be compiled separately, we give them a # _XlaScope name that is based on the name_scope of the gradients. Otherwise # they just inherit the existing _XlaScope name, which lets them be merged # together with the non-gradient computation. if xla_separate_compiled_gradients: xla_grad_scope = "%s_grad_%s" % (xla_scope, scope) else: xla_grad_scope = xla_scope attrs = { "_XlaCompile": attr_value_pb2.AttrValue(b=xla_compile), "_XlaScope": attr_value_pb2.AttrValue(s=xla_grad_scope.encode()) } with ops.get_default_graph()._attr_scope(attrs): # pylint: disable=protected-access return grad_fn()
Example #14
Source File: quantize_graph.py From AudioNet with MIT License | 5 votes |
def set_attr_string(node, key, value): try: node.attr[key].CopyFrom(attr_value_pb2.AttrValue(s=value)) except KeyError: pass
Example #15
Source File: quantize_graph.py From AudioNet with MIT License | 5 votes |
def set_attr_int_list(node, key, value): list_value = attr_value_pb2.AttrValue.ListValue(i=value) try: node.attr[key].CopyFrom(attr_value_pb2.AttrValue(list=list_value)) except KeyError: pass
Example #16
Source File: quantize_graph.py From AudioNet with MIT License | 5 votes |
def set_attr_int(node, key, value): try: node.attr[key].CopyFrom(attr_value_pb2.AttrValue(i=value)) except KeyError: pass
Example #17
Source File: quantize_graph.py From AudioNet with MIT License | 5 votes |
def set_attr_float(node, key, value): try: node.attr[key].CopyFrom(attr_value_pb2.AttrValue(f=value)) except KeyError: pass
Example #18
Source File: graph_only_ops.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def graph_placeholder(dtype, shape, name=None): """Graph-only version of tf.placeholder(), for internal use only.""" dtype = dtype.base_dtype dtype_value = attr_value_pb2.AttrValue(type=dtype.as_datatype_enum) if isinstance(shape, (list, tuple)): shape = tensor_shape.TensorShape(shape) assert isinstance(shape, tensor_shape.TensorShape) shape = attr_value_pb2.AttrValue(shape=shape.as_proto()) g = ops.get_default_graph() with ops.name_scope(name, "placeholder", []) as name: op = g.create_op("Placeholder", [], [dtype], input_types=[], attrs={"dtype": dtype_value, "shape": shape}, name=name) result, = op.outputs return result
Example #19
Source File: quantize_graph.py From sketch-to-react-native with MIT License | 5 votes |
def set_attr_int_list(node, key, value): list_value = attr_value_pb2.AttrValue.ListValue(i=value) try: node.attr[key].CopyFrom(attr_value_pb2.AttrValue(list=list_value)) except KeyError: pass
Example #20
Source File: quantize_graph.py From sketch-to-react-native with MIT License | 5 votes |
def set_attr_string(node, key, value): try: node.attr[key].CopyFrom(attr_value_pb2.AttrValue(s=value)) except KeyError: pass
Example #21
Source File: quantize_graph.py From sketch-to-react-native with MIT License | 5 votes |
def set_attr_tensor(node, key, value, dtype, shape=None): try: node.attr[key].CopyFrom( attr_value_pb2.AttrValue(tensor=tensor_util.make_tensor_proto( value, dtype=dtype, shape=shape))) except KeyError: pass
Example #22
Source File: quantize_graph.py From MobileNet with Apache License 2.0 | 5 votes |
def set_attr_string(node, key, value): try: node.attr[key].CopyFrom(attr_value_pb2.AttrValue(s=value)) except KeyError: pass
Example #23
Source File: quantize_graph.py From sketch-to-react-native with MIT License | 5 votes |
def set_attr_dtype(node, key, value): try: node.attr[key].CopyFrom( attr_value_pb2.AttrValue(type=value.as_datatype_enum)) except KeyError: pass
Example #24
Source File: graph_rewrite_util.py From tfjs-to-tf with MIT License | 5 votes |
def make_const_node(data: Tensor, name: str = None) -> NodeDef: """ Create a TF graph node containing a constant value. The resulting node is equivalent to using `tf.constant` on the default graph. Args: data: Numpy-array containing the data, shape, and datatype name: Optional name of the node Returns: Graph node for adding to a TF Graph instance """ dtype = as_dtype(data.dtype).as_datatype_enum tensor_content = data.tobytes() tensor_dim = [TensorShapeProto.Dim(size=size) for size in data.shape] tensor_shape = TensorShapeProto(dim=tensor_dim) tensor_proto = TensorProto(tensor_content=tensor_content, tensor_shape=tensor_shape, dtype=dtype) node_def = NodeDef(op='Const', name=name or 'Const', attr={ 'value': AttrValue(tensor=tensor_proto), 'dtype': AttrValue(type=dtype) }) return node_def
Example #25
Source File: graph_rewrite_util.py From tfjs-to-tf with MIT License | 5 votes |
def make_op_node(op_name: Text, inputs: Inputs, name: Text = None) -> NodeDef: """ Create a TF graph node given the operation, input, and a name. The resulting node definition won't include any operation-specific attributes. It returns a valid node for most operations, though. Args: op_name: Native TF operation name (e.g. "MatMul") inputs: Input node, node name, or list of inputs nodes or node names name: Node name in the graph, must be unique and defaults to the operation name Returns: TF graph node definition for the given operation, inputs, and name """ input_list = inputs # convert scalar input into list if not isinstance(inputs, list): input_list = [input_list] # convert list items to strings for i, item in enumerate(input_list): if hasattr(item, 'name'): input_list[i] = item.name # generate node defintion dtype = dtypes.float32.as_datatype_enum node_def = NodeDef(op=op_name, name=name or op_name, attr={'T': AttrValue(type=dtype)}) node_def.input.extend(input_list) return node_def
Example #26
Source File: guided_grad.py From darkon with Apache License 2.0 | 5 votes |
def _replace_grad(g, op): # ref: https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/framework/ops.py # tf.Graph._gradient_override_map try: op_def = op._op_def node_def = op._node_def if op_def is not None: mapped_op_type = g._gradient_override_map[op_def.name] node_def.attr["_gradient_op_type"].CopyFrom( attr_value_pb2.AttrValue(s=compat.as_bytes(mapped_op_type))) except KeyError: pass
Example #27
Source File: quantize_graph.py From MobileNet with Apache License 2.0 | 5 votes |
def set_attr_float(node, key, value): try: node.attr[key].CopyFrom(attr_value_pb2.AttrValue(f=value)) except KeyError: pass
Example #28
Source File: quantize_graph.py From MobileNet with Apache License 2.0 | 5 votes |
def set_attr_int(node, key, value): try: node.attr[key].CopyFrom(attr_value_pb2.AttrValue(i=value)) except KeyError: pass
Example #29
Source File: quantize_graph.py From MobileNet with Apache License 2.0 | 5 votes |
def set_attr_int_list(node, key, value): list_value = attr_value_pb2.AttrValue.ListValue(i=value) try: node.attr[key].CopyFrom(attr_value_pb2.AttrValue(list=list_value)) except KeyError: pass
Example #30
Source File: quantize_graph.py From MobileNet with Apache License 2.0 | 5 votes |
def set_attr_dtype(node, key, value): try: node.attr[key].CopyFrom( attr_value_pb2.AttrValue(type=value.as_datatype_enum)) except KeyError: pass