Python tensorflow.python.framework.importer.import_graph_def() Examples

The following are 23 code examples of tensorflow.python.framework.importer.import_graph_def(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module tensorflow.python.framework.importer , or try the search function .
Example #1
Source File: all_models_to_tensorboard.py    From realtime_object_detection with MIT License 6 votes vote down vote up
def create_tfevent_from_pb(model,optimized=False):
    print("> creating tfevent of model: {}".format(model))

    if optimized:
        model_path=ROOT_DIR+'/models/{}/optimized_inference_graph.pb'.format(model)
        log_dir=ROOT_DIR+'/models/{}/log_opt/'.format(model)
    else:
        model_path=ROOT_DIR+'/models/{}/frozen_inference_graph.pb'.format(model)
        log_dir=ROOT_DIR+'/models/{}/log/'.format(model)

    with session.Session(graph=ops.Graph()) as sess:
        with gfile.FastGFile(model_path, "rb") as f:
          graph_def = graph_pb2.GraphDef()
          graph_def.ParseFromString(f.read())
          importer.import_graph_def(graph_def)
        pb_visual_writer = summary.FileWriter(log_dir)
        pb_visual_writer.add_graph(sess.graph)
    print("> Model {} Imported. \nVisualize by running: \
    tensorboard --logdir={}".format(model_path, log_dir))

# Gather all Model Names in models/ 
Example #2
Source File: imperative_mode.py    From lambda-packs with MIT License 5 votes vote down vote up
def __init__(self, target, parent_graph=None):
    """Initializes an ImperativeMode.

    Args:
      target: The TensorFlow execution engine to connect to.
      parent_graph: (Optional) An ImperativeGraph.

    Raises:
      UnimplementedError: if non-None parent_graph is not an ImperativeGraph.
    """
    self._target = target
    self._parent_graph = parent_graph
    # Create a new graph
    self._graph = imperative_graph.ImperativeGraph(
        parent_graph=self._parent_graph)
    self._default_graph = self._graph.as_default()
    # Context manager to record variable inits
    self._record_variable_inits = self._graph.record_variable_inits()
    if self._parent_graph:
      if not isinstance(self._parent_graph, imperative_graph.ImperativeGraph):
        raise errors.UnimplementedError(None, None, 'ImperativeMode needs an '
                                        'ImperativeGraph')
      # Clone the `_parent_graph` in to the current graph. This is so that
      # operations used from the enclosing ImperativeMode context are
      # available in the current context.
      with self._graph.as_default(), self._graph.return_as_is():
        importer.import_graph_def(self._parent_graph.as_graph_def(), name='')
    self._session = session.Session(graph=self._graph, target=self._target)
    # Override the `_session`'s run, so that variable inits can be
    # called before the actual run.
    self._old_run = self._session.run
    self._session.run = self.run
    self._context_managers = [
        self._session.as_default(),
        self._default_graph,
        self._record_variable_inits,
        imperative_graph.add_session_attr(ops.Tensor, self._session)] 
Example #3
Source File: optimize_for_inference_test.py    From keras-lambda with MIT License 5 votes vote down vote up
def testFuseResizeAndConv(self):
    with self.test_session() as sess:
      inputs = [1, 4, 2, 5, 3, 6, -1, -4, -2, -5, -3, -6]
      input_op = constant_op.constant(
          np.array(inputs), shape=[1, 2, 3, 2], dtype=dtypes.float32)
      resize_op = image_ops.resize_bilinear(
          input_op, [12, 4], align_corners=False)
      weights = [1, 2, 3, 4, 0.1, 0.2, 0.3, 0.4]
      weights_op = constant_op.constant(
          np.array(weights), shape=[1, 2, 2, 2], dtype=dtypes.float32)
      nn_ops.conv2d(
          resize_op, weights_op, [1, 1, 1, 1], padding="VALID", name="output")
      original_graph_def = sess.graph_def
      original_result = sess.run(["output:0"])
    optimized_graph_def = optimize_for_inference_lib.fuse_resize_and_conv(
        original_graph_def, ["output"])

    with self.test_session() as sess:
      _ = importer.import_graph_def(
          optimized_graph_def, input_map={}, name="optimized")
      optimized_result = sess.run(["optimized/output:0"])

    self.assertAllClose(original_result, optimized_result)

    for node in optimized_graph_def.node:
      self.assertNotEqual("Conv2D", node.op)
      self.assertNotEqual("ResizeBilinear", node.op) 
Example #4
Source File: optimize_for_inference_test.py    From keras-lambda with MIT License 5 votes vote down vote up
def testFuseResizePadAndConv(self):
    with self.test_session() as sess:
      inputs = [1, 4, 2, 5, 3, 6, -1, -4, -2, -5, -3, -6]
      input_op = constant_op.constant(
          np.array(inputs), shape=[1, 2, 3, 2], dtype=dtypes.float32)
      resize_op = image_ops.resize_bilinear(
          input_op, [12, 4], align_corners=False)
      pad_op = array_ops.pad(resize_op, [[0, 0], [1, 1], [2, 2], [0, 0]],
                             mode="REFLECT")
      weights = [1, 2, 3, 4, 0.1, 0.2, 0.3, 0.4]
      weights_op = constant_op.constant(
          np.array(weights), shape=[1, 2, 2, 2], dtype=dtypes.float32)
      nn_ops.conv2d(
          pad_op, weights_op, [1, 1, 1, 1], padding="VALID", name="output")
      original_graph_def = sess.graph_def
      original_result = sess.run(["output:0"])
    optimized_graph_def = optimize_for_inference_lib.fuse_resize_and_conv(
        original_graph_def, ["output"])

    with self.test_session() as sess:
      _ = importer.import_graph_def(
          optimized_graph_def, input_map={}, name="optimized")
      optimized_result = sess.run(["optimized/output:0"])

    self.assertAllClose(original_result, optimized_result)

    for node in optimized_graph_def.node:
      self.assertNotEqual("Conv2D", node.op)
      self.assertNotEqual("MirrorPad", node.op)
      self.assertNotEqual("ResizeBilinear", node.op) 
Example #5
Source File: optimize_for_inference_test.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def testFuseResizePadAndConv(self):
    with self.test_session() as sess:
      inputs = [1, 4, 2, 5, 3, 6, -1, -4, -2, -5, -3, -6]
      input_op = constant_op.constant(
          np.array(inputs), shape=[1, 2, 3, 2], dtype=dtypes.float32)
      resize_op = image_ops.resize_bilinear(
          input_op, [12, 4], align_corners=False)
      pad_op = array_ops.pad(resize_op, [[0, 0], [1, 1], [2, 2], [0, 0]],
                             mode="REFLECT")
      weights = [1, 2, 3, 4, 0.1, 0.2, 0.3, 0.4]
      weights_op = constant_op.constant(
          np.array(weights), shape=[1, 2, 2, 2], dtype=dtypes.float32)
      nn_ops.conv2d(
          pad_op, weights_op, [1, 1, 1, 1], padding="VALID", name="output")
      original_graph_def = sess.graph_def
      original_result = sess.run(["output:0"])
    optimized_graph_def = optimize_for_inference_lib.fuse_resize_and_conv(
        original_graph_def, ["output"])

    with self.test_session() as sess:
      _ = importer.import_graph_def(
          optimized_graph_def, input_map={}, name="optimized")
      optimized_result = sess.run(["optimized/output:0"])

    self.assertAllClose(original_result, optimized_result)

    for node in optimized_graph_def.node:
      self.assertNotEqual("Conv2D", node.op)
      self.assertNotEqual("MirrorPad", node.op)
      self.assertNotEqual("ResizeBilinear", node.op) 
Example #6
Source File: optimize_for_inference_test.py    From auto-alt-text-lambda-api with MIT License 5 votes vote down vote up
def testFuseResizeAndConv(self):
    with self.test_session() as sess:
      inputs = [1, 4, 2, 5, 3, 6, -1, -4, -2, -5, -3, -6]
      input_op = constant_op.constant(
          np.array(inputs), shape=[1, 2, 3, 2], dtype=dtypes.float32)
      resize_op = image_ops.resize_bilinear(
          input_op, [12, 4], align_corners=False)
      weights = [1, 2, 3, 4, 0.1, 0.2, 0.3, 0.4]
      weights_op = constant_op.constant(
          np.array(weights), shape=[1, 2, 2, 2], dtype=dtypes.float32)
      nn_ops.conv2d(
          resize_op, weights_op, [1, 1, 1, 1], padding="VALID", name="output")
      original_graph_def = sess.graph_def
      original_result = sess.run(["output:0"])
    optimized_graph_def = optimize_for_inference_lib.fuse_resize_and_conv(
        original_graph_def, ["output"])

    with self.test_session() as sess:
      _ = importer.import_graph_def(
          optimized_graph_def, input_map={}, name="optimized")
      optimized_result = sess.run(["optimized/output:0"])

    self.assertAllClose(original_result, optimized_result)

    for node in optimized_graph_def.node:
      self.assertNotEqual("Conv2D", node.op)
      self.assertNotEqual("ResizeBilinear", node.op) 
Example #7
Source File: quantize_graph.py    From MobileNet with Apache License 2.0 4 votes vote down vote up
def main(unused_args):
  if not gfile.Exists(FLAGS.input):
    print("Input graph file '" + FLAGS.input + "' does not exist!")
    return -1

  known_modes = [
      "round", "quantize", "eightbit", "weights", "test", "weights_rounded"
  ]
  if not any(FLAGS.mode in s for s in known_modes):
    print("mode is '" + FLAGS.mode + "', not in " + ", ".join(known_modes) +
          ".")
    return -1

  tf_graph = graph_pb2.GraphDef()
  with gfile.Open(FLAGS.input, "rb") as f:
    data = f.read()
    tf_graph.ParseFromString(data)

  graph = ops.Graph()
  with graph.as_default():
    importer.import_graph_def(tf_graph, input_map={}, name="")

  quantized_input_range = None
  if FLAGS.quantized_input:
    quantized_input_range = [
        FLAGS.quantized_input_min, FLAGS.quantized_input_max
    ]

  fallback_quantization_range = None
  if (FLAGS.quantized_fallback_min is not None or
      FLAGS.quantized_fallback_max is not None):
    assert FLAGS.quantized_fallback_min is not None
    assert FLAGS.quantized_fallback_max is not None
    fallback_quantization_range = [
        FLAGS.quantized_fallback_min, FLAGS.quantized_fallback_max
    ]

  rewriter = GraphRewriter(tf_graph, FLAGS.mode, quantized_input_range,
                           fallback_quantization_range)

  output_graph = rewriter.rewrite(FLAGS.output_node_names.split(","))

  f = gfile.FastGFile(FLAGS.output, "wb")
  f.write(output_graph.SerializeToString())

  return 0 
Example #8
Source File: freeze_graph_test.py    From keras-lambda with MIT License 4 votes vote down vote up
def _testFreezeGraph(self, saver_write_version):

    checkpoint_prefix = os.path.join(self.get_temp_dir(), "saved_checkpoint")
    checkpoint_state_name = "checkpoint_state"
    input_graph_name = "input_graph.pb"
    output_graph_name = "output_graph.pb"

    # We'll create an input graph that has a single variable containing 1.0,
    # and that then multiplies it by 2.
    with ops.Graph().as_default():
      variable_node = variables.Variable(1.0, name="variable_node")
      output_node = math_ops.multiply(variable_node, 2.0, name="output_node")
      sess = session.Session()
      init = variables.global_variables_initializer()
      sess.run(init)
      output = sess.run(output_node)
      self.assertNear(2.0, output, 0.00001)
      saver = saver_lib.Saver(write_version=saver_write_version)
      checkpoint_path = saver.save(
          sess,
          checkpoint_prefix,
          global_step=0,
          latest_filename=checkpoint_state_name)
      graph_io.write_graph(sess.graph, self.get_temp_dir(), input_graph_name)

    # We save out the graph to disk, and then call the const conversion
    # routine.
    input_graph_path = os.path.join(self.get_temp_dir(), input_graph_name)
    input_saver_def_path = ""
    input_binary = False
    output_node_names = "output_node"
    restore_op_name = "save/restore_all"
    filename_tensor_name = "save/Const:0"
    output_graph_path = os.path.join(self.get_temp_dir(), output_graph_name)
    clear_devices = False

    freeze_graph.freeze_graph(input_graph_path, input_saver_def_path,
                              input_binary, checkpoint_path, output_node_names,
                              restore_op_name, filename_tensor_name,
                              output_graph_path, clear_devices, "")

    # Now we make sure the variable is now a constant, and that the graph still
    # produces the expected result.
    with ops.Graph().as_default():
      output_graph_def = graph_pb2.GraphDef()
      with open(output_graph_path, "rb") as f:
        output_graph_def.ParseFromString(f.read())
        _ = importer.import_graph_def(output_graph_def, name="")

      self.assertEqual(4, len(output_graph_def.node))
      for node in output_graph_def.node:
        self.assertNotEqual("VariableV2", node.op)
        self.assertNotEqual("Variable", node.op)

      with session.Session() as sess:
        output_node = sess.graph.get_tensor_by_name("output_node:0")
        output = sess.run(output_node)
        self.assertNear(2.0, output, 0.00001) 
Example #9
Source File: optimize_for_inference_test.py    From keras-lambda with MIT License 4 votes vote down vote up
def testFoldBatchNorms(self):
    with self.test_session() as sess:
      inputs = [1, 4, 2, 5, 3, 6, -1, -4, -2, -5, -3, -6]
      input_op = constant_op.constant(
          np.array(inputs), shape=[1, 1, 6, 2], dtype=dtypes.float32)
      weights = [1, 2, 3, 4, 0.1, 0.2, 0.3, 0.4]
      weights_op = constant_op.constant(
          np.array(weights), shape=[1, 2, 2, 2], dtype=dtypes.float32)
      conv_op = nn_ops.conv2d(
          input_op, weights_op, [1, 1, 1, 1], padding="SAME", name="conv_op")
      mean_op = constant_op.constant(
          np.array([10, 20]), shape=[2], dtype=dtypes.float32)
      variance_op = constant_op.constant(
          np.array([0.25, 0.5]), shape=[2], dtype=dtypes.float32)
      beta_op = constant_op.constant(
          np.array([0.1, 0.6]), shape=[2], dtype=dtypes.float32)
      gamma_op = constant_op.constant(
          np.array([1.0, 2.0]), shape=[2], dtype=dtypes.float32)
      ops.get_default_graph().graph_def_versions.producer = 8
      gen_nn_ops._batch_norm_with_global_normalization(
          conv_op,
          mean_op,
          variance_op,
          beta_op,
          gamma_op,
          0.00001,
          False,
          name="output")
      original_graph_def = sess.graph_def
      original_result = sess.run(["output:0"])
    optimized_graph_def = optimize_for_inference_lib.fold_batch_norms(
        original_graph_def)

    with self.test_session() as sess:
      _ = importer.import_graph_def(
          optimized_graph_def, input_map={}, name="optimized")
      optimized_result = sess.run(["optimized/output:0"])

    self.assertAllClose(original_result, optimized_result)

    for node in optimized_graph_def.node:
      self.assertNotEqual("BatchNormWithGlobalNormalization", node.op) 
Example #10
Source File: strip_unused_test.py    From keras-lambda with MIT License 4 votes vote down vote up
def testStripUnusedMultipleInputs(self):
    input_graph_name = "input_graph.pb"
    output_graph_name = "output_graph.pb"

    # We'll create an input graph that multiplies two input nodes.
    with ops.Graph().as_default():
      constant_node1 = constant_op.constant(1.0, name="constant_node1")
      constant_node2 = constant_op.constant(2.0, name="constant_node2")
      input_node1 = math_ops.subtract(constant_node1, 3.0, name="input_node1")
      input_node2 = math_ops.subtract(constant_node2, 5.0, name="input_node2")
      output_node = math_ops.multiply(
          input_node1, input_node2, name="output_node")
      math_ops.add(output_node, 2.0, name="later_node")
      sess = session.Session()
      output = sess.run(output_node)
      self.assertNear(6.0, output, 0.00001)
      graph_io.write_graph(sess.graph, self.get_temp_dir(), input_graph_name)

    # We save out the graph to disk, and then call the const conversion
    # routine.
    input_graph_path = os.path.join(self.get_temp_dir(), input_graph_name)
    input_binary = False
    input_node_names = "input_node1,input_node2"
    input_node_types = [
        dtypes.float32.as_datatype_enum, dtypes.float32.as_datatype_enum
    ]
    output_binary = True
    output_node_names = "output_node"
    output_graph_path = os.path.join(self.get_temp_dir(), output_graph_name)

    strip_unused_lib.strip_unused_from_files(input_graph_path, input_binary,
                                             output_graph_path, output_binary,
                                             input_node_names,
                                             output_node_names,
                                             input_node_types)

    # Now we make sure the variable is now a constant, and that the graph still
    # produces the expected result.
    with ops.Graph().as_default():
      output_graph_def = graph_pb2.GraphDef()
      with open(output_graph_path, "rb") as f:
        output_graph_def.ParseFromString(f.read())
        _ = importer.import_graph_def(output_graph_def, name="")

      self.assertEqual(3, len(output_graph_def.node))
      for node in output_graph_def.node:
        self.assertNotEqual("Add", node.op)
        self.assertNotEqual("Sub", node.op)
        if node.name == input_node_names:
          self.assertTrue("shape" in node.attr)

      with session.Session() as sess:
        input_node1 = sess.graph.get_tensor_by_name("input_node1:0")
        input_node2 = sess.graph.get_tensor_by_name("input_node2:0")
        output_node = sess.graph.get_tensor_by_name("output_node:0")
        output = sess.run(output_node,
                          feed_dict={input_node1: [10.0],
                                     input_node2: [-5.0]})
        self.assertNear(-50.0, output, 0.00001) 
Example #11
Source File: strip_unused_test.py    From keras-lambda with MIT License 4 votes vote down vote up
def testStripUnused(self):
    input_graph_name = "input_graph.pb"
    output_graph_name = "output_graph.pb"

    # We'll create an input graph that has a single constant containing 1.0,
    # and that then multiplies it by 2.
    with ops.Graph().as_default():
      constant_node = constant_op.constant(1.0, name="constant_node")
      wanted_input_node = math_ops.subtract(constant_node,
                                            3.0,
                                            name="wanted_input_node")
      output_node = math_ops.multiply(
          wanted_input_node, 2.0, name="output_node")
      math_ops.add(output_node, 2.0, name="later_node")
      sess = session.Session()
      output = sess.run(output_node)
      self.assertNear(-4.0, output, 0.00001)
      graph_io.write_graph(sess.graph, self.get_temp_dir(), input_graph_name)

    # We save out the graph to disk, and then call the const conversion
    # routine.
    input_graph_path = os.path.join(self.get_temp_dir(), input_graph_name)
    input_binary = False
    input_node_names = "wanted_input_node"
    output_binary = True
    output_node_names = "output_node"
    output_graph_path = os.path.join(self.get_temp_dir(), output_graph_name)

    strip_unused_lib.strip_unused_from_files(input_graph_path, input_binary,
                                             output_graph_path, output_binary,
                                             input_node_names,
                                             output_node_names,
                                             dtypes.float32.as_datatype_enum)

    # Now we make sure the variable is now a constant, and that the graph still
    # produces the expected result.
    with ops.Graph().as_default():
      output_graph_def = graph_pb2.GraphDef()
      with open(output_graph_path, "rb") as f:
        output_graph_def.ParseFromString(f.read())
        _ = importer.import_graph_def(output_graph_def, name="")

      self.assertEqual(3, len(output_graph_def.node))
      for node in output_graph_def.node:
        self.assertNotEqual("Add", node.op)
        self.assertNotEqual("Sub", node.op)
        if node.name == input_node_names:
          self.assertTrue("shape" in node.attr)

      with session.Session() as sess:
        input_node = sess.graph.get_tensor_by_name("wanted_input_node:0")
        output_node = sess.graph.get_tensor_by_name("output_node:0")
        output = sess.run(output_node, feed_dict={input_node: [10.0]})
        self.assertNear(20.0, output, 0.00001) 
Example #12
Source File: quantize_graph.py    From AudioNet with MIT License 4 votes vote down vote up
def main(unused_args):
  if not gfile.Exists(FLAGS.input):
    print("Input graph file '" + FLAGS.input + "' does not exist!")
    return -1

  known_modes = [
      "round", "quantize", "eightbit", "weights", "test", "weights_rounded"
  ]
  if not any(FLAGS.mode in s for s in known_modes):
    print("mode is '" + FLAGS.mode + "', not in " + ", ".join(known_modes) +
          ".")
    return -1

  tf_graph = graph_pb2.GraphDef()
  with gfile.Open(FLAGS.input, "rb") as f:
    data = f.read()
    tf_graph.ParseFromString(data)

  graph = ops.Graph()
  with graph.as_default():
    importer.import_graph_def(tf_graph, input_map={}, name="")

  quantized_input_range = None
  if FLAGS.quantized_input:
    quantized_input_range = [
        FLAGS.quantized_input_min, FLAGS.quantized_input_max
    ]

  fallback_quantization_range = None
  if (FLAGS.quantized_fallback_min is not None or
      FLAGS.quantized_fallback_max is not None):
    assert FLAGS.quantized_fallback_min is not None
    assert FLAGS.quantized_fallback_max is not None
    fallback_quantization_range = [
        FLAGS.quantized_fallback_min, FLAGS.quantized_fallback_max
    ]

  rewriter = GraphRewriter(tf_graph, FLAGS.mode, quantized_input_range,
                           fallback_quantization_range)

  output_graph = rewriter.rewrite(FLAGS.output_node_names.split(","))

  f = gfile.FastGFile(FLAGS.output, "wb")
  f.write(output_graph.SerializeToString())

  return 0 
Example #13
Source File: quantize_graph.py    From pokemon-mini with Apache License 2.0 4 votes vote down vote up
def main(unused_args):
  if not gfile.Exists(FLAGS.input):
    print("Input graph file '" + FLAGS.input + "' does not exist!")
    return -1

  known_modes = [
      "round", "quantize", "eightbit", "weights", "test", "weights_rounded"
  ]
  if not any(FLAGS.mode in s for s in known_modes):
    print("mode is '" + FLAGS.mode + "', not in " + ", ".join(known_modes) +
          ".")
    return -1

  tf_graph = graph_pb2.GraphDef()
  with gfile.Open(FLAGS.input, "rb") as f:
    data = f.read()
    tf_graph.ParseFromString(data)

  graph = ops.Graph()
  with graph.as_default():
    importer.import_graph_def(tf_graph, input_map={}, name="")

  quantized_input_range = None
  if FLAGS.quantized_input:
    quantized_input_range = [
        FLAGS.quantized_input_min, FLAGS.quantized_input_max
    ]

  fallback_quantization_range = None
  if (FLAGS.quantized_fallback_min is not None or
      FLAGS.quantized_fallback_max is not None):
    assert FLAGS.quantized_fallback_min is not None
    assert FLAGS.quantized_fallback_max is not None
    fallback_quantization_range = [
        FLAGS.quantized_fallback_min, FLAGS.quantized_fallback_max
    ]

  rewriter = GraphRewriter(tf_graph, FLAGS.mode, quantized_input_range,
                           fallback_quantization_range)

  output_graph = rewriter.rewrite(FLAGS.output_node_names.split(","))

  f = gfile.FastGFile(FLAGS.output, "wb")
  f.write(output_graph.SerializeToString())

  return 0 
Example #14
Source File: exporter.py    From hands-detection with MIT License 4 votes vote down vote up
def _write_saved_model(inference_graph_path, inputs, outputs,
                       checkpoint_path=None, use_moving_averages=False):
  """Writes SavedModel to disk.

  If checkpoint_path is not None bakes the weights into the graph thereby
  eliminating the need of checkpoint files during inference. If the model
  was trained with moving averages, setting use_moving_averages to true
  restores the moving averages, otherwise the original set of variables
  is restored.

  Args:
    inference_graph_path: Path to write inference graph.
    inputs: The input image tensor to use for detection.
    outputs: A tensor dictionary containing the outputs of a DetectionModel.
    checkpoint_path: Optional path to the checkpoint file.
    use_moving_averages: Whether to export the original or the moving averages
      of the trainable variables from the checkpoint.
  """
  inference_graph_def = tf.get_default_graph().as_graph_def()
  checkpoint_graph_def = None
  if checkpoint_path:
    output_node_names = ','.join(outputs.keys())
    checkpoint_graph_def = get_frozen_graph_def(
        inference_graph_def=inference_graph_def,
        use_moving_averages=use_moving_averages,
        input_checkpoint=checkpoint_path,
        output_node_names=output_node_names
    )

  with tf.Graph().as_default():
    with session.Session() as sess:

      tf.import_graph_def(checkpoint_graph_def)

      builder = tf.saved_model.builder.SavedModelBuilder(inference_graph_path)

      tensor_info_inputs = {
          'inputs': tf.saved_model.utils.build_tensor_info(inputs)}
      tensor_info_outputs = {}
      for k, v in outputs.items():
        tensor_info_outputs[k] = tf.saved_model.utils.build_tensor_info(v)

      detection_signature = (
          tf.saved_model.signature_def_utils.build_signature_def(
              inputs=tensor_info_inputs,
              outputs=tensor_info_outputs,
              method_name=signature_constants.PREDICT_METHOD_NAME))

      builder.add_meta_graph_and_variables(
          sess, [tf.saved_model.tag_constants.SERVING],
          signature_def_map={
              signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
                  detection_signature,
          },
      )
      builder.save() 
Example #15
Source File: exporter.py    From hands-detection with MIT License 4 votes vote down vote up
def freeze_graph_with_def_protos(
    input_graph_def,
    input_saver_def,
    input_checkpoint,
    output_node_names,
    restore_op_name,
    filename_tensor_name,
    clear_devices,
    initializer_nodes,
    variable_names_blacklist=''):
  """Converts all variables in a graph and checkpoint into constants."""
  del restore_op_name, filename_tensor_name  # Unused by updated loading code.

  # 'input_checkpoint' may be a prefix if we're using Saver V2 format
  if not saver_lib.checkpoint_exists(input_checkpoint):
    raise ValueError(
        'Input checkpoint "' + input_checkpoint + '" does not exist!')

  if not output_node_names:
    raise ValueError(
        'You must supply the name of a node to --output_node_names.')

  # Remove all the explicit device specifications for this node. This helps to
  # make the graph more portable.
  if clear_devices:
    for node in input_graph_def.node:
      node.device = ''

  _ = importer.import_graph_def(input_graph_def, name='')

  with session.Session() as sess:
    if input_saver_def:
      saver = saver_lib.Saver(saver_def=input_saver_def)
      saver.restore(sess, input_checkpoint)
    else:
      var_list = {}
      reader = pywrap_tensorflow.NewCheckpointReader(input_checkpoint)
      var_to_shape_map = reader.get_variable_to_shape_map()
      for key in var_to_shape_map:
        try:
          tensor = sess.graph.get_tensor_by_name(key + ':0')
        except KeyError:
          # This tensor doesn't exist in the graph (for example it's
          # 'global_step' or a similar housekeeping element) so skip it.
          continue
        var_list[key] = tensor
      saver = saver_lib.Saver(var_list=var_list)
      saver.restore(sess, input_checkpoint)
      if initializer_nodes:
        sess.run(initializer_nodes)

    variable_names_blacklist = (variable_names_blacklist.split(',') if
                                variable_names_blacklist else None)
    output_graph_def = graph_util.convert_variables_to_constants(
        sess,
        input_graph_def,
        output_node_names.split(','),
        variable_names_blacklist=variable_names_blacklist)

  return output_graph_def 
Example #16
Source File: quantize_graph.py    From sketch-to-react-native with MIT License 4 votes vote down vote up
def main(unused_args):
  if not gfile.Exists(FLAGS.input):
    print("Input graph file '" + FLAGS.input + "' does not exist!")
    return -1

  known_modes = [
      "round", "quantize", "eightbit", "weights", "test", "weights_rounded"
  ]
  if not any(FLAGS.mode in s for s in known_modes):
    print("mode is '" + FLAGS.mode + "', not in " + ", ".join(known_modes) +
          ".")
    return -1

  tf_graph = graph_pb2.GraphDef()
  with gfile.Open(FLAGS.input, "rb") as f:
    data = f.read()
    tf_graph.ParseFromString(data)

  graph = ops.Graph()
  with graph.as_default():
    importer.import_graph_def(tf_graph, input_map={}, name="")

  quantized_input_range = None
  if FLAGS.quantized_input:
    quantized_input_range = [
        FLAGS.quantized_input_min, FLAGS.quantized_input_max
    ]

  fallback_quantization_range = None
  if (FLAGS.quantized_fallback_min is not None or
      FLAGS.quantized_fallback_max is not None):
    assert FLAGS.quantized_fallback_min is not None
    assert FLAGS.quantized_fallback_max is not None
    fallback_quantization_range = [
        FLAGS.quantized_fallback_min, FLAGS.quantized_fallback_max
    ]

  rewriter = GraphRewriter(tf_graph, FLAGS.mode, quantized_input_range,
                           fallback_quantization_range)

  output_graph = rewriter.rewrite(FLAGS.output_node_names.split(","))

  f = gfile.FastGFile(FLAGS.output, "wb")
  f.write(output_graph.SerializeToString())

  return 0 
Example #17
Source File: exporter.py    From DOTA_models with Apache License 2.0 4 votes vote down vote up
def freeze_graph_with_def_protos(
    input_graph_def,
    input_saver_def,
    input_checkpoint,
    output_node_names,
    restore_op_name,
    filename_tensor_name,
    clear_devices,
    initializer_nodes,
    variable_names_blacklist=''):
  """Converts all variables in a graph and checkpoint into constants."""
  del restore_op_name, filename_tensor_name  # Unused by updated loading code.

  # 'input_checkpoint' may be a prefix if we're using Saver V2 format
  if not saver_lib.checkpoint_exists(input_checkpoint):
    raise ValueError(
        'Input checkpoint "' + input_checkpoint + '" does not exist!')

  if not output_node_names:
    raise ValueError(
        'You must supply the name of a node to --output_node_names.')

  # Remove all the explicit device specifications for this node. This helps to
  # make the graph more portable.
  if clear_devices:
    for node in input_graph_def.node:
      node.device = ''

  _ = importer.import_graph_def(input_graph_def, name='')

  with session.Session() as sess:
    if input_saver_def:
      saver = saver_lib.Saver(saver_def=input_saver_def)
      saver.restore(sess, input_checkpoint)
    else:
      var_list = {}
      reader = pywrap_tensorflow.NewCheckpointReader(input_checkpoint)
      var_to_shape_map = reader.get_variable_to_shape_map()
      for key in var_to_shape_map:
        try:
          tensor = sess.graph.get_tensor_by_name(key + ':0')
        except KeyError:
          # This tensor doesn't exist in the graph (for example it's
          # 'global_step' or a similar housekeeping element) so skip it.
          continue
        var_list[key] = tensor
      saver = saver_lib.Saver(var_list=var_list)
      saver.restore(sess, input_checkpoint)
      if initializer_nodes:
        sess.run(initializer_nodes)

    variable_names_blacklist = (variable_names_blacklist.split(',') if
                                variable_names_blacklist else None)
    output_graph_def = graph_util.convert_variables_to_constants(
        sess,
        input_graph_def,
        output_node_names.split(','),
        variable_names_blacklist=variable_names_blacklist)

  return output_graph_def 
Example #18
Source File: quantize_graph.py    From tensorflow-for-poets-2 with Apache License 2.0 4 votes vote down vote up
def main(unused_args):
  if not gfile.Exists(FLAGS.input):
    print("Input graph file '" + FLAGS.input + "' does not exist!")
    return -1

  known_modes = [
      "round", "quantize", "eightbit", "weights", "test", "weights_rounded"
  ]
  if not any(FLAGS.mode in s for s in known_modes):
    print("mode is '" + FLAGS.mode + "', not in " + ", ".join(known_modes) +
          ".")
    return -1

  tf_graph = graph_pb2.GraphDef()
  with gfile.Open(FLAGS.input, "rb") as f:
    data = f.read()
    tf_graph.ParseFromString(data)

  graph = ops.Graph()
  with graph.as_default():
    importer.import_graph_def(tf_graph, input_map={}, name="")

  quantized_input_range = None
  if FLAGS.quantized_input:
    quantized_input_range = [
        FLAGS.quantized_input_min, FLAGS.quantized_input_max
    ]

  fallback_quantization_range = None
  if (FLAGS.quantized_fallback_min is not None or
      FLAGS.quantized_fallback_max is not None):
    assert FLAGS.quantized_fallback_min is not None
    assert FLAGS.quantized_fallback_max is not None
    fallback_quantization_range = [
        FLAGS.quantized_fallback_min, FLAGS.quantized_fallback_max
    ]

  rewriter = GraphRewriter(tf_graph, FLAGS.mode, quantized_input_range,
                           fallback_quantization_range)

  output_graph = rewriter.rewrite(FLAGS.output_node_names.split(","))

  f = gfile.FastGFile(FLAGS.output, "wb")
  f.write(output_graph.SerializeToString())

  return 0 
Example #19
Source File: freeze_graph_test.py    From auto-alt-text-lambda-api with MIT License 4 votes vote down vote up
def _testFreezeGraph(self, saver_write_version):

    checkpoint_prefix = os.path.join(self.get_temp_dir(), "saved_checkpoint")
    checkpoint_state_name = "checkpoint_state"
    input_graph_name = "input_graph.pb"
    output_graph_name = "output_graph.pb"

    # We'll create an input graph that has a single variable containing 1.0,
    # and that then multiplies it by 2.
    with ops.Graph().as_default():
      variable_node = variables.Variable(1.0, name="variable_node")
      output_node = math_ops.multiply(variable_node, 2.0, name="output_node")
      sess = session.Session()
      init = variables.global_variables_initializer()
      sess.run(init)
      output = sess.run(output_node)
      self.assertNear(2.0, output, 0.00001)
      saver = saver_lib.Saver(write_version=saver_write_version)
      checkpoint_path = saver.save(
          sess,
          checkpoint_prefix,
          global_step=0,
          latest_filename=checkpoint_state_name)
      graph_io.write_graph(sess.graph, self.get_temp_dir(), input_graph_name)

    # We save out the graph to disk, and then call the const conversion
    # routine.
    input_graph_path = os.path.join(self.get_temp_dir(), input_graph_name)
    input_saver_def_path = ""
    input_binary = False
    output_node_names = "output_node"
    restore_op_name = "save/restore_all"
    filename_tensor_name = "save/Const:0"
    output_graph_path = os.path.join(self.get_temp_dir(), output_graph_name)
    clear_devices = False

    freeze_graph.freeze_graph(input_graph_path, input_saver_def_path,
                              input_binary, checkpoint_path, output_node_names,
                              restore_op_name, filename_tensor_name,
                              output_graph_path, clear_devices, "")

    # Now we make sure the variable is now a constant, and that the graph still
    # produces the expected result.
    with ops.Graph().as_default():
      output_graph_def = graph_pb2.GraphDef()
      with open(output_graph_path, "rb") as f:
        output_graph_def.ParseFromString(f.read())
        _ = importer.import_graph_def(output_graph_def, name="")

      self.assertEqual(4, len(output_graph_def.node))
      for node in output_graph_def.node:
        self.assertNotEqual("VariableV2", node.op)
        self.assertNotEqual("Variable", node.op)

      with session.Session() as sess:
        output_node = sess.graph.get_tensor_by_name("output_node:0")
        output = sess.run(output_node)
        self.assertNear(2.0, output, 0.00001) 
Example #20
Source File: optimize_for_inference_test.py    From auto-alt-text-lambda-api with MIT License 4 votes vote down vote up
def testFoldBatchNorms(self):
    with self.test_session() as sess:
      inputs = [1, 4, 2, 5, 3, 6, -1, -4, -2, -5, -3, -6]
      input_op = constant_op.constant(
          np.array(inputs), shape=[1, 1, 6, 2], dtype=dtypes.float32)
      weights = [1, 2, 3, 4, 0.1, 0.2, 0.3, 0.4]
      weights_op = constant_op.constant(
          np.array(weights), shape=[1, 2, 2, 2], dtype=dtypes.float32)
      conv_op = nn_ops.conv2d(
          input_op, weights_op, [1, 1, 1, 1], padding="SAME", name="conv_op")
      mean_op = constant_op.constant(
          np.array([10, 20]), shape=[2], dtype=dtypes.float32)
      variance_op = constant_op.constant(
          np.array([0.25, 0.5]), shape=[2], dtype=dtypes.float32)
      beta_op = constant_op.constant(
          np.array([0.1, 0.6]), shape=[2], dtype=dtypes.float32)
      gamma_op = constant_op.constant(
          np.array([1.0, 2.0]), shape=[2], dtype=dtypes.float32)
      ops.get_default_graph().graph_def_versions.producer = 8
      gen_nn_ops._batch_norm_with_global_normalization(
          conv_op,
          mean_op,
          variance_op,
          beta_op,
          gamma_op,
          0.00001,
          False,
          name="output")
      original_graph_def = sess.graph_def
      original_result = sess.run(["output:0"])
    optimized_graph_def = optimize_for_inference_lib.fold_batch_norms(
        original_graph_def)

    with self.test_session() as sess:
      _ = importer.import_graph_def(
          optimized_graph_def, input_map={}, name="optimized")
      optimized_result = sess.run(["optimized/output:0"])

    self.assertAllClose(original_result, optimized_result)

    for node in optimized_graph_def.node:
      self.assertNotEqual("BatchNormWithGlobalNormalization", node.op) 
Example #21
Source File: strip_unused_test.py    From auto-alt-text-lambda-api with MIT License 4 votes vote down vote up
def testStripUnusedMultipleInputs(self):
    input_graph_name = "input_graph.pb"
    output_graph_name = "output_graph.pb"

    # We'll create an input graph that multiplies two input nodes.
    with ops.Graph().as_default():
      constant_node1 = constant_op.constant(1.0, name="constant_node1")
      constant_node2 = constant_op.constant(2.0, name="constant_node2")
      input_node1 = math_ops.subtract(constant_node1, 3.0, name="input_node1")
      input_node2 = math_ops.subtract(constant_node2, 5.0, name="input_node2")
      output_node = math_ops.multiply(
          input_node1, input_node2, name="output_node")
      math_ops.add(output_node, 2.0, name="later_node")
      sess = session.Session()
      output = sess.run(output_node)
      self.assertNear(6.0, output, 0.00001)
      graph_io.write_graph(sess.graph, self.get_temp_dir(), input_graph_name)

    # We save out the graph to disk, and then call the const conversion
    # routine.
    input_graph_path = os.path.join(self.get_temp_dir(), input_graph_name)
    input_binary = False
    input_node_names = "input_node1,input_node2"
    input_node_types = [
        dtypes.float32.as_datatype_enum, dtypes.float32.as_datatype_enum
    ]
    output_binary = True
    output_node_names = "output_node"
    output_graph_path = os.path.join(self.get_temp_dir(), output_graph_name)

    strip_unused_lib.strip_unused_from_files(input_graph_path, input_binary,
                                             output_graph_path, output_binary,
                                             input_node_names,
                                             output_node_names,
                                             input_node_types)

    # Now we make sure the variable is now a constant, and that the graph still
    # produces the expected result.
    with ops.Graph().as_default():
      output_graph_def = graph_pb2.GraphDef()
      with open(output_graph_path, "rb") as f:
        output_graph_def.ParseFromString(f.read())
        _ = importer.import_graph_def(output_graph_def, name="")

      self.assertEqual(3, len(output_graph_def.node))
      for node in output_graph_def.node:
        self.assertNotEqual("Add", node.op)
        self.assertNotEqual("Sub", node.op)
        if node.name == input_node_names:
          self.assertTrue("shape" in node.attr)

      with session.Session() as sess:
        input_node1 = sess.graph.get_tensor_by_name("input_node1:0")
        input_node2 = sess.graph.get_tensor_by_name("input_node2:0")
        output_node = sess.graph.get_tensor_by_name("output_node:0")
        output = sess.run(output_node,
                          feed_dict={input_node1: [10.0],
                                     input_node2: [-5.0]})
        self.assertNear(-50.0, output, 0.00001) 
Example #22
Source File: strip_unused_test.py    From auto-alt-text-lambda-api with MIT License 4 votes vote down vote up
def testStripUnused(self):
    input_graph_name = "input_graph.pb"
    output_graph_name = "output_graph.pb"

    # We'll create an input graph that has a single constant containing 1.0,
    # and that then multiplies it by 2.
    with ops.Graph().as_default():
      constant_node = constant_op.constant(1.0, name="constant_node")
      wanted_input_node = math_ops.subtract(constant_node,
                                            3.0,
                                            name="wanted_input_node")
      output_node = math_ops.multiply(
          wanted_input_node, 2.0, name="output_node")
      math_ops.add(output_node, 2.0, name="later_node")
      sess = session.Session()
      output = sess.run(output_node)
      self.assertNear(-4.0, output, 0.00001)
      graph_io.write_graph(sess.graph, self.get_temp_dir(), input_graph_name)

    # We save out the graph to disk, and then call the const conversion
    # routine.
    input_graph_path = os.path.join(self.get_temp_dir(), input_graph_name)
    input_binary = False
    input_node_names = "wanted_input_node"
    output_binary = True
    output_node_names = "output_node"
    output_graph_path = os.path.join(self.get_temp_dir(), output_graph_name)

    strip_unused_lib.strip_unused_from_files(input_graph_path, input_binary,
                                             output_graph_path, output_binary,
                                             input_node_names,
                                             output_node_names,
                                             dtypes.float32.as_datatype_enum)

    # Now we make sure the variable is now a constant, and that the graph still
    # produces the expected result.
    with ops.Graph().as_default():
      output_graph_def = graph_pb2.GraphDef()
      with open(output_graph_path, "rb") as f:
        output_graph_def.ParseFromString(f.read())
        _ = importer.import_graph_def(output_graph_def, name="")

      self.assertEqual(3, len(output_graph_def.node))
      for node in output_graph_def.node:
        self.assertNotEqual("Add", node.op)
        self.assertNotEqual("Sub", node.op)
        if node.name == input_node_names:
          self.assertTrue("shape" in node.attr)

      with session.Session() as sess:
        input_node = sess.graph.get_tensor_by_name("wanted_input_node:0")
        output_node = sess.graph.get_tensor_by_name("output_node:0")
        output = sess.run(output_node, feed_dict={input_node: [10.0]})
        self.assertNear(20.0, output, 0.00001) 
Example #23
Source File: exporter.py    From DOTA_models with Apache License 2.0 4 votes vote down vote up
def _write_saved_model(inference_graph_path, inputs, outputs,
                       checkpoint_path=None, use_moving_averages=False):
  """Writes SavedModel to disk.

  If checkpoint_path is not None bakes the weights into the graph thereby
  eliminating the need of checkpoint files during inference. If the model
  was trained with moving averages, setting use_moving_averages to true
  restores the moving averages, otherwise the original set of variables
  is restored.

  Args:
    inference_graph_path: Path to write inference graph.
    inputs: The input image tensor to use for detection.
    outputs: A tensor dictionary containing the outputs of a DetectionModel.
    checkpoint_path: Optional path to the checkpoint file.
    use_moving_averages: Whether to export the original or the moving averages
      of the trainable variables from the checkpoint.
  """
  inference_graph_def = tf.get_default_graph().as_graph_def()
  checkpoint_graph_def = None
  if checkpoint_path:
    output_node_names = ','.join(outputs.keys())
    checkpoint_graph_def = get_frozen_graph_def(
        inference_graph_def=inference_graph_def,
        use_moving_averages=use_moving_averages,
        input_checkpoint=checkpoint_path,
        output_node_names=output_node_names
    )

  with tf.Graph().as_default():
    with session.Session() as sess:

      tf.import_graph_def(checkpoint_graph_def)

      builder = tf.saved_model.builder.SavedModelBuilder(inference_graph_path)

      tensor_info_inputs = {
          'inputs': tf.saved_model.utils.build_tensor_info(inputs)}
      tensor_info_outputs = {}
      for k, v in outputs.items():
        tensor_info_outputs[k] = tf.saved_model.utils.build_tensor_info(v)

      detection_signature = (
          tf.saved_model.signature_def_utils.build_signature_def(
              inputs=tensor_info_inputs,
              outputs=tensor_info_outputs,
              method_name=signature_constants.PREDICT_METHOD_NAME))

      builder.add_meta_graph_and_variables(
          sess, [tf.saved_model.tag_constants.SERVING],
          signature_def_map={
              signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
                  detection_signature,
          },
      )
      builder.save()