Python datasets.roidb.combined_roidb_for_training() Examples

The following are 8 code examples of datasets.roidb.combined_roidb_for_training(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module datasets.roidb , or try the search function .
Example #1
Source File: test_restore_checkpoint.py    From seg_every_thing with Apache License 2.0 5 votes vote down vote up
def test_restore_checkpoint():
    # Create Model
    model = model_builder.create(cfg.MODEL.TYPE, train=True)
    add_momentum_init_ops(model)
    init_weights(model)
    # Fill input blobs
    roidb = combined_roidb_for_training(
        cfg.TRAIN.DATASETS, cfg.TRAIN.PROPOSAL_FILES
    )
    model_builder.add_training_inputs(model, roidb=roidb)
    workspace.CreateNet(model.net)
    # Bookkeeping for checkpoint creation
    iter_num = 0
    checkpoints = {}
    output_dir = get_output_dir(cfg.TRAIN.DATASETS, training=True)
    chk_file_path = os.path.join(output_dir, 'model_iter{}.pkl'.format(iter_num))
    checkpoints[iter_num] = chk_file_path
    # Save model weights
    nu.save_model_to_weights_file(checkpoints[iter_num], model)
    orig_gpu_0_params, orig_all_params = get_params(model)
    # Change the model weights
    init_weights(model)
    # Reload the weights in the model
    nu.initialize_gpu_from_weights_file(model, chk_file_path, gpu_id=0)
    nu.broadcast_parameters(model)
    shutil.rmtree(cfg.OUTPUT_DIR)
    _, restored_all_params = get_params(model)
    # Check if all params are loaded correctly
    for scoped_name, blob in orig_all_params.items():
        np.testing.assert_array_equal(blob, restored_all_params[scoped_name])
    # Check if broadcast_parameters works
    for scoped_name, blob in restored_all_params.items():
        unscoped_name = c2_utils.UnscopeName(scoped_name)
        np.testing.assert_array_equal(blob, orig_gpu_0_params[unscoped_name]) 
Example #2
Source File: train.py    From seg_every_thing with Apache License 2.0 5 votes vote down vote up
def add_model_training_inputs(model):
    """Load the training dataset and attach the training inputs to the model."""
    logger = logging.getLogger(__name__)
    logger.info('Loading dataset: {}'.format(cfg.TRAIN.DATASETS))
    roidb = combined_roidb_for_training(
        cfg.TRAIN.DATASETS, cfg.TRAIN.PROPOSAL_FILES
    )
    logger.info('{:d} roidb entries'.format(len(roidb)))
    model_builder.add_training_inputs(model, roidb=roidb) 
Example #3
Source File: train_net.py    From NucleiDetectron with Apache License 2.0 5 votes vote down vote up
def add_model_training_inputs(model):
    """Load the training dataset and attach the training inputs to the model."""
    logger = logging.getLogger(__name__)
    logger.info('Loading dataset: {}'.format(cfg.TRAIN.DATASETS))
    roidb = combined_roidb_for_training(
        cfg.TRAIN.DATASETS, cfg.TRAIN.PROPOSAL_FILES
    )
    logger.info('{:d} roidb entries'.format(len(roidb)))
    model_builder.add_training_inputs(model, roidb=roidb) 
Example #4
Source File: train_net.py    From DetectAndTrack with Apache License 2.0 5 votes vote down vote up
def add_model_inputs(model):
    logger.info('Loading dataset: {}'.format(cfg.TRAIN.DATASET))
    roidb = combined_roidb_for_training(
        cfg.TRAIN.DATASET, cfg.TRAIN.PROPOSAL_FILE)
    logger.info('{:d} roidb entries'.format(len(roidb)))
    model_builder.add_inputs(model, roidb=roidb) 
Example #5
Source File: data_loader_benchmark.py    From seg_every_thing with Apache License 2.0 4 votes vote down vote up
def main(opts):
    logger = logging.getLogger(__name__)
    roidb = combined_roidb_for_training(
        cfg.TRAIN.DATASETS, cfg.TRAIN.PROPOSAL_FILES)
    logger.info('{:d} roidb entries'.format(len(roidb)))
    roi_data_loader = RoIDataLoader(
        roidb,
        num_loaders=opts.num_loaders,
        minibatch_queue_size=opts.minibatch_queue_size,
        blobs_queue_capacity=opts.blobs_queue_capacity)
    blob_names = roi_data_loader.get_output_names()

    net = core.Net('dequeue_net')
    net.type = 'dag'
    all_blobs = []
    for gpu_id in range(cfg.NUM_GPUS):
        with core.NameScope('gpu_{}'.format(gpu_id)):
            with core.DeviceScope(muji.OnGPU(gpu_id)):
                for blob_name in blob_names:
                    blob = core.ScopedName(blob_name)
                    all_blobs.append(blob)
                    workspace.CreateBlob(blob)
                    logger.info('Creating blob: {}'.format(blob))
                net.DequeueBlobs(
                    roi_data_loader._blobs_queue_name, blob_names)
    logger.info("Protobuf:\n" + str(net.Proto()))

    if opts.profiler:
        import cProfile
        cProfile.runctx(
            'loader_loop(roi_data_loader)', globals(), locals(),
            sort='cumulative')
    else:
        loader_loop(roi_data_loader)

    roi_data_loader.register_sigint_handler()
    roi_data_loader.start(prefill=True)
    total_time = 0
    for i in range(opts.num_batches):
        start_t = time.time()
        for _ in range(opts.x_factor):
            workspace.RunNetOnce(net)
        total_time += (time.time() - start_t) / opts.x_factor
        logger.info('{:d}/{:d}: Averge dequeue time: {:.3f}s  [{:d}/{:d}]'.
                    format(i + 1, opts.num_batches, total_time / (i + 1),
                           roi_data_loader._minibatch_queue.qsize(),
                           opts.minibatch_queue_size))
        # Sleep to simulate the time taken by running a little network
        time.sleep(opts.sleep_time)
        # To inspect:
        # blobs = workspace.FetchBlobs(all_blobs)
        # from IPython import embed; embed()
    logger.info('Shutting down data loader...')
    roi_data_loader.shutdown() 
Example #6
Source File: data_loader_benchmark.py    From masktextspotter.caffe2 with Apache License 2.0 4 votes vote down vote up
def main(opts):
    logger = logging.getLogger(__name__)
    roidb = combined_roidb_for_training(
        cfg.TRAIN.DATASETS, cfg.TRAIN.PROPOSAL_FILES)
    logger.info('{:d} roidb entries'.format(len(roidb)))
    roi_data_loader = RoIDataLoader(
        roidb,
        num_loaders=opts.num_loaders,
        minibatch_queue_size=opts.minibatch_queue_size,
        blobs_queue_capacity=opts.blobs_queue_capacity)
    blob_names = roi_data_loader.get_output_names()

    net = core.Net('dequeue_net')
    net.type = 'dag'
    all_blobs = []
    for gpu_id in range(cfg.NUM_GPUS):
        with core.NameScope('gpu_{}'.format(gpu_id)):
            with core.DeviceScope(muji.OnGPU(gpu_id)):
                for blob_name in blob_names:
                    blob = core.ScopedName(blob_name)
                    all_blobs.append(blob)
                    workspace.CreateBlob(blob)
                    logger.info('Creating blob: {}'.format(blob))
                net.DequeueBlobs(
                    roi_data_loader._blobs_queue_name, blob_names)
    logger.info("Protobuf:\n" + str(net.Proto()))

    if opts.profiler:
        import cProfile
        cProfile.runctx(
            'loader_loop(roi_data_loader)', globals(), locals(),
            sort='cumulative')
    else:
        loader_loop(roi_data_loader)

    roi_data_loader.register_sigint_handler()
    roi_data_loader.start(prefill=True)
    total_time = 0
    for i in range(opts.num_batches):
        start_t = time.time()
        for _ in range(opts.x_factor):
            workspace.RunNetOnce(net)
        total_time += (time.time() - start_t) / opts.x_factor
        logger.info('{:d}/{:d}: Averge dequeue time: {:.3f}s  [{:d}/{:d}]'.
                    format(i + 1, opts.num_batches, total_time / (i + 1),
                           roi_data_loader._minibatch_queue.qsize(),
                           opts.minibatch_queue_size))
        # Sleep to simulate the time taken by running a little network
        time.sleep(opts.sleep_time)
        # To inspect:
        # blobs = workspace.FetchBlobs(all_blobs)
        # from IPython import embed; embed()
    logger.info('Shutting down data loader (EnqueueBlob errors are ok)...')
    roi_data_loader.shutdown() 
Example #7
Source File: data_loader_benchmark.py    From NucleiDetectron with Apache License 2.0 4 votes vote down vote up
def main(opts):
    logger = logging.getLogger(__name__)
    roidb = combined_roidb_for_training(
        cfg.TRAIN.DATASETS, cfg.TRAIN.PROPOSAL_FILES)
    logger.info('{:d} roidb entries'.format(len(roidb)))
    roi_data_loader = RoIDataLoader(
        roidb,
        num_loaders=opts.num_loaders,
        minibatch_queue_size=opts.minibatch_queue_size,
        blobs_queue_capacity=opts.blobs_queue_capacity)
    blob_names = roi_data_loader.get_output_names()

    net = core.Net('dequeue_net')
    net.type = 'dag'
    all_blobs = []
    for gpu_id in range(cfg.NUM_GPUS):
        with core.NameScope('gpu_{}'.format(gpu_id)):
            with core.DeviceScope(muji.OnGPU(gpu_id)):
                for blob_name in blob_names:
                    blob = core.ScopedName(blob_name)
                    all_blobs.append(blob)
                    workspace.CreateBlob(blob)
                    logger.info('Creating blob: {}'.format(blob))
                net.DequeueBlobs(
                    roi_data_loader._blobs_queue_name, blob_names)
    logger.info("Protobuf:\n" + str(net.Proto()))

    if opts.profiler:
        import cProfile
        cProfile.runctx(
            'loader_loop(roi_data_loader)', globals(), locals(),
            sort='cumulative')
    else:
        loader_loop(roi_data_loader)

    roi_data_loader.register_sigint_handler()
    roi_data_loader.start(prefill=True)
    total_time = 0
    for i in range(opts.num_batches):
        start_t = time.time()
        for _ in range(opts.x_factor):
            workspace.RunNetOnce(net)
        total_time += (time.time() - start_t) / opts.x_factor
        logger.info('{:d}/{:d}: Averge dequeue time: {:.3f}s  [{:d}/{:d}]'.
                    format(i + 1, opts.num_batches, total_time / (i + 1),
                           roi_data_loader._minibatch_queue.qsize(),
                           opts.minibatch_queue_size))
        # Sleep to simulate the time taken by running a little network
        time.sleep(opts.sleep_time)
        # To inspect:
        # blobs = workspace.FetchBlobs(all_blobs)
        # from IPython import embed; embed()
    logger.info('Shutting down data loader (EnqueueBlob errors are ok)...')
    roi_data_loader.shutdown() 
Example #8
Source File: data_loader_benchmark.py    From DetectAndTrack with Apache License 2.0 4 votes vote down vote up
def main(opts):
    logger = logging.getLogger(__name__)
    roidb = combined_roidb_for_training(
        cfg.TRAIN.DATASETS, cfg.TRAIN.PROPOSAL_FILES)
    logger.info('{:d} roidb entries'.format(len(roidb)))
    roi_data_loader = RoIDataLoader(
        roidb,
        num_loaders=opts.num_loaders,
        minibatch_queue_size=opts.minibatch_queue_size,
        blobs_queue_capacity=opts.blobs_queue_capacity)
    blob_names = roi_data_loader.get_output_names()

    net = core.Net('dequeue_net')
    net.type = 'dag'
    all_blobs = []
    for gpu_id in range(cfg.NUM_GPUS):
        with core.NameScope('gpu_{}'.format(gpu_id)):
            with core.DeviceScope(muji.OnGPU(gpu_id)):
                for blob_name in blob_names:
                    blob = core.ScopedName(blob_name)
                    all_blobs.append(blob)
                    workspace.CreateBlob(blob)
                    logger.info('Creating blob: {}'.format(blob))
                net.DequeueBlobs(
                    roi_data_loader._blobs_queue_name, blob_names)
    logger.info("Protobuf:\n" + str(net.Proto()))

    if opts.profiler:
        import cProfile
        cProfile.runctx(
            'loader_loop(roi_data_loader)', globals(), locals(),
            sort='cumulative')
    else:
        loader_loop(roi_data_loader)

    roi_data_loader.register_sigint_handler()
    roi_data_loader.start(prefill=True)
    total_time = 0
    for i in range(opts.num_batches):
        start_t = time.time()
        for _ in range(opts.x_factor):
            workspace.RunNetOnce(net)
        total_time += (time.time() - start_t) / opts.x_factor
        logger.info('{:d}/{:d}: Averge dequeue time: {:.3f}s  [{:d}/{:d}]'.
                    format(i + 1, opts.num_batches, total_time / (i + 1),
                           roi_data_loader._minibatch_queue.qsize(),
                           opts.minibatch_queue_size))
        # Sleep to simulate the time taken by running a little network
        time.sleep(opts.sleep_time)
        # To inspect:
        # blobs = workspace.FetchBlobs(all_blobs)
        # from IPython import embed; embed()
    logger.info('Shutting down data loader...')
    roi_data_loader.shutdown()