Python data.data_loader.CreateDataLoader() Examples
The following are 2
code examples of data.data_loader.CreateDataLoader().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
data.data_loader
, or try the search function
.
Example #1
Source File: test_function.py From non-stationary_texture_syn with MIT License | 5 votes |
def test_func(opt_train, webpage, epoch='latest'): opt = copy.deepcopy(opt_train) print(opt) # specify the directory to save the results during training opt.results_dir = './results/' opt.isTrain = False opt.nThreads = 1 # test code only supports nThreads = 1 opt.batchSize = 1 # test code only supports batchSize = 1 opt.serial_batches = True # no shuffle opt.no_flip = True # no flip opt.dataroot = opt.dataroot + '/test' opt.model = 'test' opt.dataset_mode = 'single' opt.which_epoch = epoch opt.how_many = 50 opt.phase = 'test' # opt.name = name data_loader = CreateDataLoader(opt) dataset = data_loader.load_data() model = create_model(opt) visualizer = Visualizer(opt) # create website # web_dir = os.path.join(opt.results_dir, opt.name, '%s_%s' % (opt.phase, opt.which_epoch)) # web_dir = os.path.join(opt.results_dir, opt.name) # webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.which_epoch)) # test for i, data in enumerate(dataset): if i >= opt.how_many: break model.set_input(data) model.test() visuals = model.get_current_visuals() img_path = model.get_image_paths() print('process image... %s' % img_path) visualizer.save_images_epoch(webpage, visuals, img_path, epoch) webpage.save()
Example #2
Source File: ocrd_anybaseocr_dewarp.py From ocrd_anybaseocr with Apache License 2.0 | 5 votes |
def prepare_data(self, opt, page_img, path): sys.path.append(path) from data.data_loader import CreateDataLoader data_loader = CreateDataLoader(opt) data_loader.dataset.A_paths = [page_img.filename] data_loader.dataset.dataset_size = len(data_loader.dataset.A_paths) data_loader.dataloader = torch.utils.data.DataLoader(data_loader.dataset, batch_size=opt.batchSize, shuffle=not opt.serial_batches, num_workers=int(opt.nThreads)) dataset = data_loader.load_data() return dataset # test