Python chainer.functions.resize_images() Examples
The following are 30
code examples of chainer.functions.resize_images().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
chainer.functions
, or try the search function
.
Example #1
Source File: test_arrays.py From chainer with MIT License | 6 votes |
def setUp(self): class Model(chainer.Chain): def __init__(self, ops, args, input_argname): super(Model, self).__init__() self.ops = ops self.args = args self.input_argname = input_argname def __call__(self, x): self.args[self.input_argname] = x return self.ops(**self.args) # (batch, channel, height, width) = (1, 1, 2, 2) self.x = np.array([[[[64, 32], [64, 32]]]], np.float32) # 2x upsampling args = {'output_shape': (4, 4)} self.model = Model(F.resize_images, args, 'x')
Example #2
Source File: test_arrays.py From onnx-chainer with MIT License | 6 votes |
def setUp(self): class Model(chainer.Chain): def __init__(self, ops, args, input_argname): super(Model, self).__init__() self.ops = ops self.args = args self.input_argname = input_argname def __call__(self, x): self.args[self.input_argname] = x return self.ops(**self.args) # (batch, channel, height, width) = (1, 1, 2, 2) self.x = np.array([[[[64, 32], [64, 32]]]], np.float32) # 2x upsampling args = {'output_shape': (4, 4)} self.model = Model(F.resize_images, args, 'x')
Example #3
Source File: train_multi.py From chainercv with MIT License | 6 votes |
def forward(self, imgs, labels): h_aux, h_main = self.model.extractor(imgs) h_aux = F.dropout(self.aux_conv1(h_aux), ratio=0.1) h_aux = self.aux_conv2(h_aux) h_aux = F.resize_images(h_aux, imgs.shape[2:]) h_main = self.model.ppm(h_main) h_main = F.dropout(self.model.head_conv1(h_main), ratio=0.1) h_main = self.model.head_conv2(h_main) h_main = F.resize_images(h_main, imgs.shape[2:]) aux_loss = F.softmax_cross_entropy(h_aux, labels) main_loss = F.softmax_cross_entropy(h_main, labels) loss = 0.4 * aux_loss + main_loss chainer.reporter.report({'loss': loss}, self) return loss
Example #4
Source File: render.py From mesh_reconstruction with MIT License | 6 votes |
def render(directory, elevation=30, distance=DISTANCE): for azimuth in range(0, 360, 15): filename = os.path.join(directory, 'e%03d_a%03d.png' % (elevation, azimuth)) set_camera_location(elevation, azimuth, distance) bpy.context.scene.render.filepath = filename bpy.ops.render.render(write_still=True) if False: img = scipy.misc.imread(filename)[:, :, :].astype('float32') / 255. if False: img = (img[::2, ::2] + img[1::2, ::2] + img[::2, 1::2] + img[1::2, 1::2]) / 4. else: import chainer.functions as cf img = img.transpose((2, 0, 1))[None, :, :, :] img = cf.resize_images(img, (64, 64)) img = img[0].data.transpose((1, 2, 0)) img = (img * 255).clip(0., 255.).astype('uint8') scipy.misc.imsave(filename, img)
Example #5
Source File: pspnet.py From chainercv with MIT License | 6 votes |
def _multiscale_predict(predict_method, img, scales): orig_H, orig_W = img.shape[1:] scores = [] orig_img = img for scale in scales: img = orig_img.copy() if scale != 1.0: img = transforms.resize( img, (int(orig_H * scale), int(orig_W * scale))) # This method should return scores y = predict_method(img)[None] assert y.shape[2:] == img.shape[1:] if scale != 1.0: y = F.resize_images(y, (orig_H, orig_W)).array scores.append(y) xp = chainer.backends.cuda.get_array_module(scores[0]) scores = xp.stack(scores) return scores.mean(0)[0] # (C, H, W)
Example #6
Source File: evaluation.py From chainer-gan-lib with MIT License | 5 votes |
def get_mean_cov(model, ims, batch_size=100): n, c, w, h = ims.shape n_batches = int(math.ceil(float(n) / float(batch_size))) xp = model.xp print('Batch size:', batch_size) print('Total number of images:', n) print('Total number of batches:', n_batches) ys = xp.empty((n, 2048), dtype=xp.float32) for i in range(n_batches): print('Running batch', i + 1, '/', n_batches, '...') batch_start = (i * batch_size) batch_end = min((i + 1) * batch_size, n) ims_batch = ims[batch_start:batch_end] ims_batch = xp.asarray(ims_batch) # To GPU if using CuPy ims_batch = Variable(ims_batch) # Resize image to the shape expected by the inception module if (w, h) != (299, 299): ims_batch = F.resize_images(ims_batch, (299, 299)) # bilinear # Feed images to the inception module to get the features with chainer.using_config('train', False), chainer.using_config('enable_backprop', False): y = model(ims_batch, get_feature=True) ys[batch_start:batch_end] = y.data mean = chainer.cuda.to_cpu(xp.mean(ys, axis=0)) # cov = F.cross_covariance(ys, ys, reduce="no").data.get() cov = np.cov(chainer.cuda.to_cpu(ys).T) return mean, cov
Example #7
Source File: pspnet.py From chainercv with MIT License | 5 votes |
def forward(self, x): ys = [x] H, W = x.shape[2:] for f, ksize in zip(self, self.ksizes): y = F.average_pooling_2d(x, ksize, ksize) y = f(y) y = F.resize_images(y, (H, W)) ys.append(y) return F.concat(ys, axis=1)
Example #8
Source File: pspnet.py From chainercv with MIT License | 5 votes |
def forward(self, x): _, res5 = self.extractor(x) h = self.ppm(res5) h = self.head_conv1(h) h = self.head_conv2(h) h = F.resize_images(h, x.shape[2:]) return h
Example #9
Source File: deeplab_v3_plus.py From chainercv with MIT License | 5 votes |
def _get_proba(self, img, scale, flip): if flip: img = img[:, :, ::-1] _, H, W = img.shape if scale == 1.0: h, w = H, W else: h, w = int(H * scale), int(W * scale) img = resize(img, (h, w)) img = self.prepare(img) x = chainer.Variable(self.xp.asarray(img[np.newaxis])) x = self.forward(x) x = F.softmax(x, axis=1) score = F.resize_images(x, img.shape[1:])[0, :, :h, :w].array score = chainer.backends.cuda.to_cpu(score) if scale != 1.0: score = resize(score, (H, W)) if flip: score = score[:, :, ::-1] return score
Example #10
Source File: evaluation.py From chainer-gan-lib with MIT License | 5 votes |
def get_mean_cov(model, ims, batch_size=100): n, c, w, h = ims.shape n_batches = int(math.ceil(float(n) / float(batch_size))) xp = model.xp print('Batch size:', batch_size) print('Total number of images:', n) print('Total number of batches:', n_batches) # Compute the softmax predicitions for for all images, split into batches # in order to fit in memory ys = xp.empty((n, 2048), dtype=xp.float32) # Softmax container for i in range(n_batches): print('Running batch', i + 1, '/', n_batches, '...') batch_start = (i * batch_size) batch_end = min((i + 1) * batch_size, n) ims_batch = ims[batch_start:batch_end] ims_batch = xp.asarray(ims_batch) # To GPU if using CuPy ims_batch = Variable(ims_batch) # Resize image to the shape expected by the inception module if (w, h) != (299, 299): ims_batch = F.resize_images(ims_batch, (299, 299)) # bilinear # Feed images to the inception module to get the softmax predictions with chainer.using_config('train', False), chainer.using_config('enable_backprop', False): y = model(ims_batch, get_feature=True) ys[batch_start:batch_end] = y.data mean = xp.mean(ys, axis=0).get() # cov = F.cross_covariance(ys, ys, reduce="no").data.get() cov = np.cov(ys.get().T) return mean, cov
Example #11
Source File: ResizeImages.py From chainer-compiler with MIT License | 5 votes |
def forward(self, x): y1 = F.resize_images(x, (257, 513)) return y1 # ======================================
Example #12
Source File: renderer.py From mesh_reconstruction with MIT License | 5 votes |
def rasterize_silhouettes( faces, image_size=DEFAULT_IMAGE_SIZE, anti_aliasing=DEFAULT_ANTI_ALIASING, near=DEFAULT_NEAR, far=DEFAULT_FAR, eps=DEFAULT_EPS, background_color=DEFAULT_BACKGROUND_COLOR, ): if anti_aliasing: # 2x super-sampling faces = faces * (2 * image_size - 1) / (2 * image_size - 2) images = neural_renderer.Rasterize( image_size * 2, near, far, eps, background_color, return_rgb=False, return_alpha=True, return_depth=False)( faces)[1] else: images = neural_renderer.Rasterize( image_size, near, far, eps, background_color, return_rgb=False, return_alpha=True, return_depth=False)( faces)[1] # transpose & vertical flip images = images[:, ::-1, :] if anti_aliasing: # 0.5x down-sampling images = cf.resize_images(images[:, None, :, :], (image_size, image_size))[:, 0] return images
Example #13
Source File: train.py From deep_dream_3d with MIT License | 5 votes |
def save_image(directory, filename, scene, image_size, distance, azimuth=0): # set camera batch_size = scene.num_cameras azimuth_batch = cp.ones(batch_size, 'float32') * azimuth distance_batch = cp.ones(batch_size, 'float32') * distance scene.camera.set_eye(azimuth=azimuth_batch, distance=distance_batch) # rasterization & save images = scene.rasterize(image_size=image_size * 2, background_colors=1., fill_back=True).data.get() images = cf.resize_images(images, (image_size, image_size)) image = images[0].transpose((1, 2, 0)).data image = (image * 255).clip(0., 255.).astype('uint8') scipy.misc.imsave(os.path.join(directory, filename), image)
Example #14
Source File: utils.py From Guided-Attention-Inference-Network with MIT License | 5 votes |
def VGGprepare_am_input(var): xp = get_array_module(var) # var = F.resize_images(var, size) var = F.transpose(var, (0, 2, 3, 1)) # [[W, H, C]] var = F.flip(var, 3) var -= xp.array([[103.939, 116.779, 123.68]], dtype=xp.float32) var = F.transpose(var, (0, 3, 1, 2)) return var
Example #15
Source File: GAIN.py From Guided-Attention-Inference-Network with MIT License | 5 votes |
def get_gcam(self, end_output, activations, shape, label): self.cleargrads() class_id = self.set_init_grad(end_output, label) end_output.backward(retain_grad=True) grad = activations.grad_var grad = F.average_pooling_2d(grad, (grad.shape[-2], grad.shape[-1]), 1) grad = F.expand_dims(F.reshape(grad, (grad.shape[0]*grad.shape[1], grad.shape[2], grad.shape[3])), 0) weights = activations weights = F.expand_dims(F.reshape(weights, (weights.shape[0]*weights.shape[1], weights.shape[2], weights.shape[3])), 0) gcam = F.resize_images(F.relu(F.convolution_2d(weights, grad, None, 1, 0)), shape) return gcam, class_id
Example #16
Source File: MultiScaleNetwork.py From Video-frame-prediction-by-multi-scale-GAN with MIT License | 5 votes |
def __call__(self, seq_input, prev_output=None): """ :param seq_input: sequence of previous frames scaled down for the current Generator :param prev output: The not yet scaled up output of the previous scale of Generator if any. :type seq_input: ndarray: [batch X Input feature Maps X Height X Width] :type prev output: ndarray: [batch X 3 X Height@prev scale X Width@prev scale return: Result of passing through Convolutions and activatons at this scale of Generator """ if not self.lowest_scale: # Concatenate scaled image from prev Generator Scale scaled_output = resize_images(prev_output, (int(seq_input.shape[2]), int(seq_input.shape[3]))) seq_input = F.concat((seq_input, scaled_output), 1) # ReLu at laster to compute activations and hecne vrzw output = seq_input for i in range(len(self.net) - 1): output = getattr(self, self.net[i][0])(output) output = F.relu(output) output = getattr(self, self.net[-1][0])(output) output = F.tanh(output) # TODO: Train Network by allowing the addition of activations previous scales # if not self.lowest_scale: # return output + scaled_output return output
Example #17
Source File: MultiScaleNetwork.py From Video-frame-prediction-by-multi-scale-GAN with MIT License | 5 votes |
def predict(self, x, no_of_predictions=1, seq_len=4): """ :param x: :param no_of_predictions: :param seq_len: :return: """ # x shape = [n, 12, h, w] xp = cp.get_array_module(x) n, c, h, w = x.shape outputs = [] for i in range(no_of_predictions): print("Predicting frame no : ",i+1) seq = resize_images(x, (int(h / 2 ** 3), int(w / 2 ** 3))) print((int(h / 2 ** 3), int(w / 2 ** 3))) output = None for j in range(1, 5): output = self.singleforward(j, seq, output) if j != 4: seq = resize_images(x, (int(h / 2 ** (3-j)), int(w / 2 ** (3-j)))) outputs.append(output.data) x = xp.concatenate([x, output.data], 1)[:, -seq_len*3:, :, :] print("Predictions done for : ", i+1) return outputs
Example #18
Source File: pspnet.py From imgclsmob with MIT License | 5 votes |
def __call__(self, x, out_size): x = self.conv1(x) x = self.dropout(x) x = self.conv2(x) x = F.resize_images(x, output_shape=out_size) return x
Example #19
Source File: deeplabv3.py From imgclsmob with MIT License | 5 votes |
def __call__(self, x): in_size = self.upscale_out_size if self.upscale_out_size is not None else x.shape[2:] x = self.pool(x) x = self.conv(x) x = F.resize_images(x, output_shape=in_size) return x
Example #20
Source File: sinet.py From imgclsmob with MIT License | 5 votes |
def __call__(self, x): out_size = self.out_size if (self.out_size is not None) else\ (x.shape[2] * self.scale_factor, x.shape[3] * self.scale_factor) return F.resize_images(x, output_shape=out_size)
Example #21
Source File: resattnet.py From imgclsmob with MIT License | 5 votes |
def __call__(self, x): return F.resize_images(x, output_shape=self.size)
Example #22
Source File: airnet.py From imgclsmob with MIT License | 5 votes |
def __call__(self, x): input_shape = x.shape x = self.conv1(x) x = self.pool(x) x = self.conv2(x) x = F.resize_images(x, output_shape=input_shape[2:]) x = self.conv3(x) x = F.sigmoid(x) return x
Example #23
Source File: ntsnet_cub.py From imgclsmob with MIT License | 5 votes |
def __call__(self, x): raw_pre_features = self.backbone(x) rpn_score = self.navigator_unit(raw_pre_features) rpn_score.to_cpu() all_cdds = [np.concatenate((y.reshape(-1, 1), self.edge_anchors.copy()), axis=1) for y in rpn_score.array] top_n_cdds = [hard_nms(y, top_n=self.top_n, iou_thresh=0.25) for y in all_cdds] top_n_cdds = np.array(top_n_cdds) top_n_index = top_n_cdds[:, :, -1].astype(np.int64) top_n_index = np.array(top_n_index, dtype=np.int64) top_n_prob = np.take_along_axis(rpn_score.array, top_n_index, axis=1) batch = x.shape[0] x_pad = F.pad(x, pad_width=self.pad_width, mode="constant", constant_values=0) part_imgs = [] for i in range(batch): for j in range(self.top_n): y0, x0, y1, x1 = tuple(top_n_cdds[i][j, 1:5].astype(np.int64)) x_res = F.resize_images( x_pad[i:i + 1, :, y0:y1, x0:x1], output_shape=(224, 224)) part_imgs.append(x_res) part_imgs = F.concat(tuple(part_imgs), axis=0) part_features = self.backbone_tail(self.backbone(part_imgs)) part_feature = part_features.reshape((batch, self.top_n, -1)) part_feature = part_feature[:, :self.num_cat, :] part_feature = part_feature.reshape((batch, -1)) raw_features = self.backbone_tail(raw_pre_features) concat_out = F.concat((part_feature, raw_features), axis=1) concat_logits = self.concat_net(concat_out) if self.aux: raw_logits = self.backbone_classifier(raw_features) part_logits = self.partcls_net(part_features).reshape((batch, self.top_n, -1)) return concat_logits, raw_logits, part_logits, top_n_prob else: return concat_logits
Example #24
Source File: deeplabv3.py From imgclsmob with MIT License | 5 votes |
def __call__(self, x, out_size): x = self.conv1(x) x = self.dropout(x) x = self.conv2(x) x = F.resize_images(x, output_shape=out_size) return x
Example #25
Source File: ResizeImages.py From chainer-compiler with MIT License | 5 votes |
def forward(self, x): y1 = F.resize_images(x, (257, 513)) return y1 # ======================================
Example #26
Source File: pspnet.py From imgclsmob with MIT License | 5 votes |
def __call__(self, x): in_size = self.upscale_out_size if self.upscale_out_size is not None else x.shape[2:] x = self.pool(x) x = self.conv(x) x = F.resize_images(x, output_shape=in_size) return x
Example #27
Source File: fcn8sd.py From imgclsmob with MIT License | 5 votes |
def __call__(self, x, out_size): x = self.conv1(x) x = self.dropout(x) x = self.conv2(x) x = F.resize_images(x, output_shape=out_size) return x
Example #28
Source File: test_resize_images.py From chainer with MIT License | 5 votes |
def forward(self, inputs, device): x, = inputs output_shape = self.in_shape[2:] y = functions.resize_images( x, output_shape, mode=self.mode, align_corners=self.align_corners) return y,
Example #29
Source File: test_resize_images.py From chainer with MIT License | 5 votes |
def check_backward(self, x, output_shape, gy): def f(x): return functions.resize_images( x, output_shape, mode=self.mode, align_corners=self.align_corners) gradient_check.check_backward( f, x, gy, dtype='d', atol=1e-2, rtol=1e-3, eps=1e-5)
Example #30
Source File: test_resize_images.py From chainer with MIT License | 5 votes |
def forward(self, inputs, device): x, = inputs output_shape = self.output_shape[2:] y = functions.resize_images( x, output_shape, mode=self.mode, align_corners=self.align_corners) return y,