Python cupy.concatenate() Examples
The following are 23
code examples of cupy.concatenate().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
cupy
, or try the search function
.
Example #1
Source File: test_cbpdnin.py From sporco with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_05(self): D = cp.random.randn(4, 32) s = cp.random.randn(64) Wg = np.concatenate((cp.eye(16), cp.eye(16)), axis=-1) lmbda = 0.1 mu = 0.01 gamma = 0.01 # ConvBPDNInhib class opt = cbpdnin.ConvBPDNInhib.Options( {'Verbose': False, 'MaxMainIter': 10}) try: b = cbpdnin.ConvBPDNInhib( D, s, Wg=Wg, lmbda=lmbda, mu=mu, gamma=gamma, opt=opt, dimN=1) b.solve() except Exception as e: print(e) assert 0
Example #2
Source File: test_cbpdnin.py From sporco with BSD 3-Clause "New" or "Revised" License | 6 votes |
def test_02(self): D = cp.random.randn(4, 4, 32) s = cp.random.randn(8, 8) Wg = cp.concatenate((cp.eye(16), cp.eye(16)), axis=-1) lmbda = 0.1 # ConvBPDNInhib class opt = cbpdnin.ConvBPDNInhib.Options( {'Verbose': False, 'MaxMainIter': 10}) try: b = cbpdnin.ConvBPDNInhib(D, s, Wg=Wg, lmbda=lmbda, opt=opt) b.solve() except Exception as e: print(e) assert 0
Example #3
Source File: test_join.py From cupy with MIT License | 5 votes |
def test_concatenate_32bit_boundary(self): a = cupy.zeros((2 ** 30,), dtype=cupy.int8) b = cupy.zeros((2 ** 30,), dtype=cupy.int8) ret = cupy.concatenate([a, b]) del a del b del ret # Free huge memory for slow test cupy.get_default_memory_pool().free_all_blocks()
Example #4
Source File: pcanet.py From PCANet with MIT License | 5 votes |
def histogram(self, binary_images): """ Separate a given image into blocks and calculate a histogram in each block. Supporse data in a block is in range [0, 3] and the acutual values are :: [0 0 1] [2 2 2] [2 3 3] | If default bins ``[-0.5 0.5 1.5 2.5 3.5]`` applied, the histogram will be ``[2 1 4 2]``. | If ``n_bins`` is specified, the range of data divided equally. | For example, if the data is in range ``[0, 3]`` and ``n_bins = 2``, | bins will be ``[-0.5 1.5 3.5]`` and the histogram will be ``[3 6]``. """ k = pow(2, self.n_l2_output) if self.n_bins is None: self.n_bins = k + 1 bins = xp.linspace(-0.5, k - 0.5, self.n_bins) def bhist(image): # calculate Bhist(T) in the original paper ps = Patches( image, self.filter_shape_pooling, self.step_shape_pooling).patches H = [xp.histogram(p.flatten(), bins)[0] for p in ps] return xp.concatenate(H) return xp.vstack([bhist(image) for image in binary_images])
Example #5
Source File: model.py From TSNetVocoder with BSD 3-Clause "New" or "Revised" License | 5 votes |
def loss(self, X, T, A): def duplication(a): return cupy.concatenate(cupy.broadcast_to(a, (self.fs, a.shape[0], a.shape[1])), axis=1).reshape(a.shape[0]*self.fs, -1) A = [duplication(a) for a in A] X, T = [Variable(x) for x in X], [Variable(t) for t in T] Y = self._forward(X, T=T) loss, lossA, lossP = self._loss(Y, T, A) reporter.report({'loss': loss, 'lossA': lossA, 'lossP': lossP}, self) return loss
Example #6
Source File: test_join.py From cupy with MIT License | 5 votes |
def test_concatenate_out_invalid_dtype(self): for xp in (numpy, cupy): a = testing.shaped_arange((3, 4), xp, xp.float64) b = testing.shaped_reverse_arange((3, 4), xp, xp.float64) c = testing.shaped_arange((3, 4), xp, xp.float64) out = xp.zeros((3, 12), dtype=xp.int64) with pytest.raises(TypeError): xp.concatenate((a, b, c), axis=1, out=out)
Example #7
Source File: test_join.py From cupy with MIT License | 5 votes |
def test_concatenate_out_invalid_shape_2(self): for xp in (numpy, cupy): a = testing.shaped_arange((3, 4), xp, xp.float64) b = testing.shaped_reverse_arange((3, 4), xp, xp.float64) c = testing.shaped_arange((3, 4), xp, xp.float64) out = xp.zeros((2, 2, 10), dtype=xp.float64) with pytest.raises(ValueError): xp.concatenate((a, b, c), axis=1, out=out)
Example #8
Source File: test_join.py From cupy with MIT License | 5 votes |
def test_concatenate_out_same_kind(self, xp): a = testing.shaped_arange((3, 4), xp, xp.float64) b = testing.shaped_reverse_arange((3, 4), xp, xp.float64) c = testing.shaped_arange((3, 4), xp, xp.float64) out = xp.zeros((3, 12), dtype=xp.float32) xp.concatenate((a, b, c), axis=1, out=out) return out
Example #9
Source File: test_join.py From cupy with MIT License | 5 votes |
def test_concatenate_out(self, xp, dtype): a = testing.shaped_arange((3, 4), xp, dtype) b = testing.shaped_reverse_arange((3, 4), xp, dtype) c = testing.shaped_arange((3, 4), xp, dtype) out = xp.zeros((3, 12), dtype=dtype) xp.concatenate((a, b, c), axis=1, out=out) return out
Example #10
Source File: test_join.py From cupy with MIT License | 5 votes |
def test_concatenate_wrong_shape(self): a = cupy.empty((2, 3, 4)) b = cupy.empty((3, 3, 4)) c = cupy.empty((4, 4, 4)) with self.assertRaises(ValueError): cupy.concatenate((a, b, c))
Example #11
Source File: test_join.py From cupy with MIT License | 5 votes |
def test_concatenate_wrong_ndim(self): a = cupy.empty((2, 3)) b = cupy.empty((2,)) with self.assertRaises(ValueError): cupy.concatenate((a, b))
Example #12
Source File: test_join.py From cupy with MIT License | 5 votes |
def test_concatenate_large_f_contiguous(self, xp, dtype): a = testing.shaped_arange((2, 3, 4), xp, dtype) b = testing.shaped_arange((2, 3, 2), xp, dtype).T c = testing.shaped_arange((2, 3, 3), xp, dtype) d = testing.shaped_arange((2, 3, 2), xp, dtype).T e = testing.shaped_arange((2, 3, 2), xp, dtype) return xp.concatenate((a, b, c, d, e) * 2, axis=-1)
Example #13
Source File: test_join.py From cupy with MIT License | 5 votes |
def test_concatenate_f_contiguous(self, xp, dtype): a = testing.shaped_arange((2, 3, 4), xp, dtype) b = testing.shaped_arange((2, 3, 2), xp, dtype).T c = testing.shaped_arange((2, 3, 3), xp, dtype) return xp.concatenate((a, b, c), axis=-1)
Example #14
Source File: test_join.py From cupy with MIT License | 5 votes |
def test_concatenate_large_different_devices(self): arrs = [] for i in range(10): with cuda.Device(i % 2): arrs.append(cupy.empty((2, 3, 4))) with pytest.raises(ValueError): cupy.concatenate(arrs)
Example #15
Source File: test_join.py From cupy with MIT License | 5 votes |
def test_concatenate_large_5(self, xp, dtype): a = testing.shaped_arange((2, 3, 4), xp, dtype) b = testing.shaped_reverse_arange((2, 3, 4), xp, 'i') return xp.concatenate((a, b) * 10, axis=-1)
Example #16
Source File: test_join.py From cupy with MIT License | 5 votes |
def test_concatenate_large_4(self, xp, dtype): a = testing.shaped_arange((2, 3, 4), xp, dtype) b = testing.shaped_reverse_arange((2, 3, 4), xp, dtype) return xp.concatenate((a, b) * 10, axis=-1)
Example #17
Source File: test_join.py From cupy with MIT License | 5 votes |
def test_concatenate_large_2(self, xp, dtype): a = testing.shaped_arange((2, 3, 4), xp, dtype) b = testing.shaped_reverse_arange((2, 3, 2), xp, dtype) c = testing.shaped_arange((2, 3, 3), xp, dtype) d = testing.shaped_arange((2, 3, 5), xp, dtype) e = testing.shaped_arange((2, 3, 2), xp, dtype) return xp.concatenate((a, b, c, d, e) * 2, axis=-1)
Example #18
Source File: test_join.py From cupy with MIT License | 5 votes |
def test_concatenate_axis_none(self, xp, dtype): a = testing.shaped_arange((2, 3), xp, dtype) b = testing.shaped_reverse_arange((3, 5, 2), xp, dtype) c = testing.shaped_arange((7, ), xp, dtype) return xp.concatenate((a, b, c), axis=None)
Example #19
Source File: test_join.py From cupy with MIT License | 5 votes |
def test_concatenate2(self, xp, dtype): a = testing.shaped_arange((2, 3, 4), xp, dtype) b = testing.shaped_reverse_arange((2, 3, 2), xp, dtype) c = testing.shaped_arange((2, 3, 3), xp, dtype) return xp.concatenate((a, b, c), axis=-1)
Example #20
Source File: test_join.py From cupy with MIT License | 5 votes |
def test_concatenate1(self, xp, dtype): a = testing.shaped_arange((2, 3, 4), xp, dtype) b = testing.shaped_reverse_arange((2, 3, 2), xp, dtype) c = testing.shaped_arange((2, 3, 3), xp, dtype) return xp.concatenate((a, b, c), axis=2)
Example #21
Source File: construct.py From cupy with MIT License | 5 votes |
def _compressed_sparse_stack(blocks, axis): """Fast path for stacking CSR/CSC matrices (i) vstack for CSR, (ii) hstack for CSC. """ other_axis = 1 if axis == 0 else 0 data = cupy.concatenate([b.data for b in blocks]) constant_dim = blocks[0].shape[other_axis] idx_dtype = sputils.get_index_dtype(arrays=[b.indptr for b in blocks], maxval=max(data.size, constant_dim)) indices = cupy.empty(data.size, dtype=idx_dtype) indptr = cupy.empty(sum(b.shape[axis] for b in blocks) + 1, dtype=idx_dtype) last_indptr = idx_dtype(0) sum_dim = 0 sum_indices = 0 for b in blocks: if b.shape[other_axis] != constant_dim: raise ValueError( 'incompatible dimensions for axis %d' % other_axis) indices[sum_indices:sum_indices+b.indices.size] = b.indices sum_indices += b.indices.size idxs = slice(sum_dim, sum_dim + b.shape[axis]) indptr[idxs] = b.indptr[:-1] indptr[idxs] += last_indptr sum_dim += b.shape[axis] last_indptr += b.indptr[-1] indptr[-1] = last_indptr if axis == 0: return csr.csr_matrix((data, indices, indptr), shape=(sum_dim, constant_dim)) else: return csc.csc_matrix((data, indices, indptr), shape=(constant_dim, sum_dim))
Example #22
Source File: inception_resnet_v2.py From nips17-adversarial-attack with MIT License | 4 votes |
def __call__(self, x): with chainer.function.force_backprop_mode(): with chainer.configuration.using_config('train', False): if isinstance(x, chainer.Variable): x = x.data x = x[:, :, 10:309, 10:309] x = chainer.Variable(x) hs_enc = self.model(x) prob = hs_enc[-1] hs_enc = [x] + hs_enc[:-1] t = xp.argmax(prob.data, axis=1).astype(xp.int32) loss = F.softmax_cross_entropy(prob, t) * float(x.shape[0]) loss.backward(retain_grad=True) del loss del prob for h in hs_enc: h.unchain_backward() data_scales = [1e-2, 1e0, 1e0, 1e0, 1e1, 1e0] grad_scales = [1e4, 1e3, 1e3, 1e2, 1e2, 1e4] for h, ds, gs in zip(hs_enc, data_scales, grad_scales): h.data *= ds h.grad *= gs #self.hoge.append([float(xp.std(h.data)) for h in hs_enc]) #import numpy as np #print(1 / np.mean(self.hoge, axis=0)) target_sizes = [320, 160, 80, 40, 20, 10] for i, h in enumerate(hs_enc): t = target_sizes[i] s = h.shape[2] h = xp.concatenate((h.data, h.grad), axis=1) p1 = (t - s) // 2 p2 = t - s - p1 h = xp.pad(h, ((0, 0), (0, 0), (p1, p2), (p1, p2)), 'constant', constant_values=0.0) hs_enc[i] = h return hs_enc
Example #23
Source File: _mass_ts.py From mass-ts with Apache License 2.0 | 4 votes |
def mass2_gpu(ts, query): """ Compute the distance profile for the given query over the given time series. This require cupy to be installed. Parameters ---------- ts : array_like The array to create a rolling window on. query : array_like The query. Returns ------- An array of distances. Raises ------ ValueError If ts is not a list or np.array. If query is not a list or np.array. If ts or query is not one dimensional. """ def moving_mean_std_gpu(a, w): s = cp.concatenate([cp.array([0]), cp.cumsum(a)]) sSq = cp.concatenate([cp.array([0]), cp.cumsum(a ** 2)]) segSum = s[w:] - s[:-w] segSumSq = sSq[w:] -sSq[:-w] movmean = segSum / w movstd = cp.sqrt(segSumSq / w - (segSum / w) ** 2) return (movmean, movstd) x = cp.asarray(ts) y = cp.asarray(query) n = x.size m = y.size meany = cp.mean(y) sigmay = cp.std(y) meanx, sigmax = moving_mean_std_gpu(x, m) meanx = cp.concatenate([cp.ones(n - meanx.size), meanx]) sigmax = cp.concatenate([cp.zeros(n - sigmax.size), sigmax]) y = cp.concatenate((cp.flip(y, axis=0), cp.zeros(n - m))) X = cp.fft.fft(x) Y = cp.fft.fft(y) Z = X * Y z = cp.fft.ifft(Z) dist = 2 * (m - (z[m - 1:n] - m * meanx[m - 1:n] * meany) / (sigmax[m - 1:n] * sigmay)) dist = cp.sqrt(dist) return cp.asnumpy(dist)