Python nets.mobilenet.mobilenet_v2.mobilenet_base() Examples
The following are 30
code examples of nets.mobilenet.mobilenet_v2.mobilenet_base().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
nets.mobilenet.mobilenet_v2
, or try the search function
.
Example #1
Source File: mobilenet_v2_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def testWithOutputStride16AndExplicitPadding(self): tf.reset_default_graph() out, _ = mobilenet.mobilenet_base( tf.placeholder(tf.float32, (10, 224, 224, 16)), conv_defs=mobilenet_v2.V2_DEF, output_stride=16, use_explicit_padding=True) self.assertEqual(out.get_shape().as_list()[1:3], [14, 14])
Example #2
Source File: mobilenet_v2_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def testWithOutputStride8AndExplicitPadding(self): tf.reset_default_graph() out, _ = mobilenet.mobilenet_base( tf.placeholder(tf.float32, (10, 224, 224, 16)), conv_defs=mobilenet_v2.V2_DEF, output_stride=8, use_explicit_padding=True, scope='MobilenetV2') self.assertEqual(out.get_shape().as_list()[1:3], [28, 28])
Example #3
Source File: mobilenet_v2_test.py From MAX-Object-Detector with Apache License 2.0 | 5 votes |
def testWithOutputStride16(self): tf.reset_default_graph() out, _ = mobilenet.mobilenet_base( tf.placeholder(tf.float32, (10, 224, 224, 16)), conv_defs=mobilenet_v2.V2_DEF, output_stride=16) self.assertEqual(out.get_shape().as_list()[1:3], [14, 14])
Example #4
Source File: feature_extractor.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def _mobilenet_v2(net, depth_multiplier, output_stride, reuse=None, scope=None, final_endpoint=None): """Auxiliary function to add support for 'reuse' to mobilenet_v2. Args: net: Input tensor of shape [batch_size, height, width, channels]. depth_multiplier: Float multiplier for the depth (number of channels) for all convolution ops. The value must be greater than zero. Typical usage will be to set this value in (0, 1) to reduce the number of parameters or computation cost of the model. output_stride: An integer that specifies the requested ratio of input to output spatial resolution. If not None, then we invoke atrous convolution if necessary to prevent the network from reducing the spatial resolution of the activation maps. Allowed values are 8 (accurate fully convolutional mode), 16 (fast fully convolutional mode), 32 (classification mode). reuse: Reuse model variables. scope: Optional variable scope. final_endpoint: The endpoint to construct the network up to. Returns: Features extracted by MobileNetv2. """ with tf.variable_scope( scope, 'MobilenetV2', [net], reuse=reuse) as scope: return mobilenet_v2.mobilenet_base( net, conv_defs=mobilenet_v2.V2_DEF, depth_multiplier=depth_multiplier, min_depth=8 if depth_multiplier == 1.0 else 1, divisible_by=8 if depth_multiplier == 1.0 else 1, final_endpoint=final_endpoint or _MOBILENET_V2_FINAL_ENDPOINT, output_stride=output_stride, scope=scope) # A map from network name to network function.
Example #5
Source File: mobilenet_v2_test.py From models with Apache License 2.0 | 5 votes |
def testWithOutputStride8(self): out, _ = mobilenet.mobilenet_base( tf.placeholder(tf.float32, (10, 224, 224, 16)), conv_defs=mobilenet_v2.V2_DEF, output_stride=8, scope='MobilenetV2') self.assertEqual(out.get_shape().as_list()[1:3], [28, 28])
Example #6
Source File: mobilenet_v2_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def testWithOutputStride16AndExplicitPadding(self): tf.reset_default_graph() out, _ = mobilenet.mobilenet_base( tf.placeholder(tf.float32, (10, 224, 224, 16)), conv_defs=mobilenet_v2.V2_DEF, output_stride=16, use_explicit_padding=True) self.assertEqual(out.get_shape().as_list()[1:3], [14, 14])
Example #7
Source File: mobilenet_v2_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def testMobilenetBase(self): tf.reset_default_graph() # Verifies that mobilenet_base returns pre-pooling layer. with slim.arg_scope((mobilenet.depth_multiplier,), min_depth=32): net, _ = mobilenet_v2.mobilenet_base( tf.placeholder(tf.float32, (10, 224, 224, 16)), conv_defs=mobilenet_v2.V2_DEF, depth_multiplier=0.1) self.assertEqual(net.get_shape().as_list(), [10, 7, 7, 128])
Example #8
Source File: mobilenet_v2_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def testWithOutputStride8(self): out, _ = mobilenet.mobilenet_base( tf.placeholder(tf.float32, (10, 224, 224, 16)), conv_defs=mobilenet_v2.V2_DEF, output_stride=8, scope='MobilenetV2') self.assertEqual(out.get_shape().as_list()[1:3], [28, 28])
Example #9
Source File: mobilenet_v2_test.py From MAX-Object-Detector with Apache License 2.0 | 5 votes |
def testWithOutputStride16AndExplicitPadding(self): tf.reset_default_graph() out, _ = mobilenet.mobilenet_base( tf.placeholder(tf.float32, (10, 224, 224, 16)), conv_defs=mobilenet_v2.V2_DEF, output_stride=16, use_explicit_padding=True) self.assertEqual(out.get_shape().as_list()[1:3], [14, 14])
Example #10
Source File: mobilenet_v2_test.py From MAX-Object-Detector with Apache License 2.0 | 5 votes |
def testWithOutputStride8AndExplicitPadding(self): tf.reset_default_graph() out, _ = mobilenet.mobilenet_base( tf.placeholder(tf.float32, (10, 224, 224, 16)), conv_defs=mobilenet_v2.V2_DEF, output_stride=8, use_explicit_padding=True, scope='MobilenetV2') self.assertEqual(out.get_shape().as_list()[1:3], [28, 28])
Example #11
Source File: mobilenet_v2_test.py From g-tensorflow-models with Apache License 2.0 | 5 votes |
def testWithOutputStride16(self): tf.reset_default_graph() out, _ = mobilenet.mobilenet_base( tf.placeholder(tf.float32, (10, 224, 224, 16)), conv_defs=mobilenet_v2.V2_DEF, output_stride=16) self.assertEqual(out.get_shape().as_list()[1:3], [14, 14])
Example #12
Source File: mobilenet_v2_test.py From MAX-Image-Segmenter with Apache License 2.0 | 5 votes |
def testWithOutputStride8AndExplicitPadding(self): tf.reset_default_graph() out, _ = mobilenet.mobilenet_base( tf.placeholder(tf.float32, (10, 224, 224, 16)), conv_defs=mobilenet_v2.V2_DEF, output_stride=8, use_explicit_padding=True, scope='MobilenetV2') self.assertEqual(out.get_shape().as_list()[1:3], [28, 28])
Example #13
Source File: mobilenet_v2_test.py From MAX-Image-Segmenter with Apache License 2.0 | 5 votes |
def testWithOutputStride16(self): tf.reset_default_graph() out, _ = mobilenet.mobilenet_base( tf.placeholder(tf.float32, (10, 224, 224, 16)), conv_defs=mobilenet_v2.V2_DEF, output_stride=16) self.assertEqual(out.get_shape().as_list()[1:3], [14, 14])
Example #14
Source File: mobilenet_v2_test.py From MAX-Image-Segmenter with Apache License 2.0 | 5 votes |
def testMobilenetBase(self): tf.reset_default_graph() # Verifies that mobilenet_base returns pre-pooling layer. with slim.arg_scope((mobilenet.depth_multiplier,), min_depth=32): net, _ = mobilenet_v2.mobilenet_base( tf.placeholder(tf.float32, (10, 224, 224, 16)), conv_defs=mobilenet_v2.V2_DEF, depth_multiplier=0.1) self.assertEqual(net.get_shape().as_list(), [10, 7, 7, 128])
Example #15
Source File: mobilenet_v2_test.py From MAX-Image-Segmenter with Apache License 2.0 | 5 votes |
def testWithOutputStride8(self): out, _ = mobilenet.mobilenet_base( tf.placeholder(tf.float32, (10, 224, 224, 16)), conv_defs=mobilenet_v2.V2_DEF, output_stride=8, scope='MobilenetV2') self.assertEqual(out.get_shape().as_list()[1:3], [28, 28])
Example #16
Source File: mobilenet_v2_test.py From MAX-Image-Segmenter with Apache License 2.0 | 5 votes |
def testWithOutputStride16AndExplicitPadding(self): tf.reset_default_graph() out, _ = mobilenet.mobilenet_base( tf.placeholder(tf.float32, (10, 224, 224, 16)), conv_defs=mobilenet_v2.V2_DEF, output_stride=16, use_explicit_padding=True) self.assertEqual(out.get_shape().as_list()[1:3], [14, 14])
Example #17
Source File: mobilenet_v2_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def testWithOutputStride8AndExplicitPadding(self): tf.reset_default_graph() out, _ = mobilenet.mobilenet_base( tf.placeholder(tf.float32, (10, 224, 224, 16)), conv_defs=mobilenet_v2.V2_DEF, output_stride=8, use_explicit_padding=True, scope='MobilenetV2') self.assertEqual(out.get_shape().as_list()[1:3], [28, 28])
Example #18
Source File: mobilenet_v2_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def testWithOutputStride16(self): tf.reset_default_graph() out, _ = mobilenet.mobilenet_base( tf.placeholder(tf.float32, (10, 224, 224, 16)), conv_defs=mobilenet_v2.V2_DEF, output_stride=16) self.assertEqual(out.get_shape().as_list()[1:3], [14, 14])
Example #19
Source File: mobilenet_v2_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def testMobilenetBase(self): tf.reset_default_graph() # Verifies that mobilenet_base returns pre-pooling layer. with slim.arg_scope((mobilenet.depth_multiplier,), min_depth=32): net, _ = mobilenet_v2.mobilenet_base( tf.placeholder(tf.float32, (10, 224, 224, 16)), conv_defs=mobilenet_v2.V2_DEF, depth_multiplier=0.1) self.assertEqual(net.get_shape().as_list(), [10, 7, 7, 128])
Example #20
Source File: mobilenet_v2_test.py From BMW-TensorFlow-Training-GUI with Apache License 2.0 | 5 votes |
def testWithOutputStride8(self): out, _ = mobilenet.mobilenet_base( tf.placeholder(tf.float32, (10, 224, 224, 16)), conv_defs=mobilenet_v2.V2_DEF, output_stride=8, scope='MobilenetV2') self.assertEqual(out.get_shape().as_list()[1:3], [28, 28])
Example #21
Source File: mobilenet_v2_test.py From Gun-Detector with Apache License 2.0 | 5 votes |
def testWithOutputStride16AndExplicitPadding(self): tf.reset_default_graph() out, _ = mobilenet.mobilenet_base( tf.placeholder(tf.float32, (10, 224, 224, 16)), conv_defs=mobilenet_v2.V2_DEF, output_stride=16, use_explicit_padding=True) self.assertEqual(out.get_shape().as_list()[1:3], [14, 14])
Example #22
Source File: mobilenet_v2_test.py From Gun-Detector with Apache License 2.0 | 5 votes |
def testWithOutputStride8AndExplicitPadding(self): tf.reset_default_graph() out, _ = mobilenet.mobilenet_base( tf.placeholder(tf.float32, (10, 224, 224, 16)), conv_defs=mobilenet_v2.V2_DEF, output_stride=8, use_explicit_padding=True, scope='MobilenetV2') self.assertEqual(out.get_shape().as_list()[1:3], [28, 28])
Example #23
Source File: mobilenet_v2_test.py From Gun-Detector with Apache License 2.0 | 5 votes |
def testWithOutputStride16(self): tf.reset_default_graph() out, _ = mobilenet.mobilenet_base( tf.placeholder(tf.float32, (10, 224, 224, 16)), conv_defs=mobilenet_v2.V2_DEF, output_stride=16) self.assertEqual(out.get_shape().as_list()[1:3], [14, 14])
Example #24
Source File: mobilenet_v2_test.py From Gun-Detector with Apache License 2.0 | 5 votes |
def testMobilenetBase(self): tf.reset_default_graph() # Verifies that mobilenet_base returns pre-pooling layer. with slim.arg_scope((mobilenet.depth_multiplier,), min_depth=32): net, _ = mobilenet_v2.mobilenet_base( tf.placeholder(tf.float32, (10, 224, 224, 16)), conv_defs=mobilenet_v2.V2_DEF, depth_multiplier=0.1) self.assertEqual(net.get_shape().as_list(), [10, 7, 7, 128])
Example #25
Source File: mobilenet_v2_test.py From Gun-Detector with Apache License 2.0 | 5 votes |
def testWithOutputStride8(self): out, _ = mobilenet.mobilenet_base( tf.placeholder(tf.float32, (10, 224, 224, 16)), conv_defs=mobilenet_v2.V2_DEF, output_stride=8, scope='MobilenetV2') self.assertEqual(out.get_shape().as_list()[1:3], [28, 28])
Example #26
Source File: mobilenet_v2_test.py From CBAM-tensorflow-slim with MIT License | 5 votes |
def testWithOutputStride16AndExplicitPadding(self): tf.reset_default_graph() out, _ = mobilenet.mobilenet_base( tf.placeholder(tf.float32, (10, 224, 224, 16)), conv_defs=mobilenet_v2.V2_DEF, output_stride=16, use_explicit_padding=True) self.assertEqual(out.get_shape().as_list()[1:3], [14, 14])
Example #27
Source File: mobilenet_v2_test.py From CBAM-tensorflow-slim with MIT License | 5 votes |
def testWithOutputStride8AndExplicitPadding(self): tf.reset_default_graph() out, _ = mobilenet.mobilenet_base( tf.placeholder(tf.float32, (10, 224, 224, 16)), conv_defs=mobilenet_v2.V2_DEF, output_stride=8, use_explicit_padding=True, scope='MobilenetV2') self.assertEqual(out.get_shape().as_list()[1:3], [28, 28])
Example #28
Source File: mobilenet_v2_test.py From CBAM-tensorflow-slim with MIT License | 5 votes |
def testWithOutputStride16(self): tf.reset_default_graph() out, _ = mobilenet.mobilenet_base( tf.placeholder(tf.float32, (10, 224, 224, 16)), conv_defs=mobilenet_v2.V2_DEF, output_stride=16) self.assertEqual(out.get_shape().as_list()[1:3], [14, 14])
Example #29
Source File: mobilenet_v2_test.py From CBAM-tensorflow-slim with MIT License | 5 votes |
def testMobilenetBase(self): tf.reset_default_graph() # Verifies that mobilenet_base returns pre-pooling layer. with slim.arg_scope((mobilenet.depth_multiplier,), min_depth=32): net, _ = mobilenet_v2.mobilenet_base( tf.placeholder(tf.float32, (10, 224, 224, 16)), conv_defs=mobilenet_v2.V2_DEF, depth_multiplier=0.1) self.assertEqual(net.get_shape().as_list(), [10, 7, 7, 128])
Example #30
Source File: mobilenet_v2_test.py From DeepLab_v3 with MIT License | 5 votes |
def testWithOutputStride8(self): out, _ = mobilenet.mobilenet_base( tf.placeholder(tf.float32, (10, 224, 224, 16)), conv_defs=mobilenet_v2.V2_DEF, output_stride=8, scope='MobilenetV2') self.assertEqual(out.get_shape().as_list()[1:3], [28, 28])