Python misc.utils.clip_gradient() Examples
The following are 1
code examples of misc.utils.clip_gradient().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
misc.utils
, or try the search function
.
Example #1
Source File: train.py From video-caption.pytorch with MIT License | 4 votes |
def train(loader, model, crit, optimizer, lr_scheduler, opt, rl_crit=None): model.train() model = nn.DataParallel(model) for epoch in range(opt["epochs"]): lr_scheduler.step() iteration = 0 # If start self crit training if opt["self_crit_after"] != -1 and epoch >= opt["self_crit_after"]: sc_flag = True init_cider_scorer(opt["cached_tokens"]) else: sc_flag = False for data in loader: torch.cuda.synchronize() fc_feats = Variable(data['fc_feats']).cuda() labels = Variable(data['labels']).long().cuda() masks = Variable(data['masks']).cuda() optimizer.zero_grad() if not sc_flag: seq_probs, _ = model(fc_feats, labels, 'train') loss = crit(seq_probs, labels[:, 1:], masks[:, 1:]) else: seq_probs, seq_preds = model( fc_feats, mode='inference', opt=opt) reward = get_self_critical_reward(model, fc_feats, data, seq_preds) print(reward.shape) loss = rl_crit(seq_probs, seq_preds, Variable( torch.from_numpy(reward).float().cuda())) loss.backward() utils.clip_gradient(optimizer, opt["grad_clip"]) optimizer.step() train_loss = loss.data[0] torch.cuda.synchronize() iteration += 1 if not sc_flag: print("iter %d (epoch %d), train_loss = %.6f" % (iteration, epoch, train_loss)) else: print("iter %d (epoch %d), avg_reward = %.6f" % (iteration, epoch, np.mean(reward[:, 0]))) if epoch != 0 and epoch % opt["save_checkpoint_every"] == 0: model_path = os.path.join(opt["checkpoint_path"], 'model_%d.pth' % (epoch)) model_info_path = os.path.join(opt["checkpoint_path"], 'model_score.txt') torch.save(model.state_dict(), model_path) print("model saved to %s" % (model_path)) with open(model_info_path, 'a') as f: f.write("model_%d, loss: %.6f\n" % (epoch, train_loss))