Python tensor2tensor.data_generators.generator_utils.generate_files() Examples
The following are 30
code examples of tensor2tensor.data_generators.generator_utils.generate_files().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensor2tensor.data_generators.generator_utils
, or try the search function
.
Example #1
Source File: text_problems.py From BERT with Apache License 2.0 | 6 votes |
def generate_data(self, data_dir, tmp_dir, task_id=-1): # task_id should be in [0, self.num_output_shards) assert (0 <= task_id) and (task_id < self.num_output_shards) # A task_id is only supposed to write only one output shard, it can operate # over multiple *input* shards. input_files = self._task_id_to_input_files(task_id) output_file = self._task_id_to_output_file(data_dir, task_id) # Which output split is this task writing to? split, _, _ = self._task_id_to_output_split(task_id) # Actually generate examples. generator_utils.generate_files( self.generate_encoded_samples( data_dir, tmp_dir, split, input_files), [output_file]) # Shuffle the output. generator_utils.shuffle_dataset([output_file], extra_fn=self._pack_fn())
Example #2
Source File: timeseries.py From tensor2tensor with Apache License 2.0 | 6 votes |
def generate_data(self, data_dir, tmp_dir, task_id=-1): filepath_fns = { problem.DatasetSplit.TRAIN: self.training_filepaths, problem.DatasetSplit.EVAL: self.dev_filepaths, problem.DatasetSplit.TEST: self.test_filepaths, } split_paths = [(split["split"], filepath_fns[split["split"]]( data_dir, split["shards"], shuffled=False)) for split in self.dataset_splits] all_paths = [] for _, paths in split_paths: all_paths.extend(paths) if self.is_generate_per_split: for split, paths in split_paths: generator_utils.generate_files( self.generate_samples(data_dir, tmp_dir, split), paths) else: generator_utils.generate_files( self.generate_samples(data_dir, tmp_dir, problem.DatasetSplit.TRAIN), all_paths) generator_utils.shuffle_dataset(all_paths)
Example #3
Source File: text_problems.py From tensor2tensor with Apache License 2.0 | 6 votes |
def generate_data(self, data_dir, tmp_dir, task_id=-1): """Generates training/dev data. Args: data_dir: a string tmp_dir: a string task_id: an optional integer Returns: shard or shards for which data was generated. """ tf.logging.info("generate_data task_id=%s" % task_id) encoder = self.get_or_create_vocab(data_dir, tmp_dir) assert task_id >= 0 and task_id < self.num_generate_tasks if task_id < self.num_train_shards: out_file = self.training_filepaths( data_dir, self.num_train_shards, shuffled=False)[task_id] else: out_file = self.dev_filepaths( data_dir, self.num_dev_shards, shuffled=False)[task_id - self.num_train_shards] generator_utils.generate_files( self.example_generator(encoder, tmp_dir, task_id), [out_file]) generator_utils.shuffle_dataset([out_file])
Example #4
Source File: text_problems.py From tensor2tensor with Apache License 2.0 | 6 votes |
def generate_data(self, data_dir, tmp_dir, task_id=-1): # task_id should be in [0, self.num_output_shards) assert (0 <= task_id) and (task_id < self.num_output_shards) # A task_id is only supposed to write only one output shard, it can operate # over multiple *input* shards. input_files = self._task_id_to_input_files(task_id) output_file = self._task_id_to_output_file(data_dir, task_id) # Which output split is this task writing to? split, _, _ = self._task_id_to_output_split(task_id) # Actually generate examples. generator_utils.generate_files( self.generate_encoded_samples( data_dir, tmp_dir, split, input_files), [output_file]) # Shuffle the output. generator_utils.shuffle_dataset([output_file], extra_fn=self._pack_fn())
Example #5
Source File: generator_utils_test.py From BERT with Apache License 2.0 | 6 votes |
def testGenerateFiles(self): tmp_dir = self.get_temp_dir() (_, tmp_file_path) = tempfile.mkstemp(dir=tmp_dir) tmp_file_name = os.path.basename(tmp_file_path) # Generate a trivial file and assert the file exists. def test_generator(): yield {"inputs": [1], "target": [1]} filenames = generator_utils.train_data_filenames(tmp_file_name, tmp_dir, 1) generator_utils.generate_files(test_generator(), filenames) self.assertTrue(tf.gfile.Exists(tmp_file_path + "-train-00000-of-00001")) # Clean up. os.remove(tmp_file_path + "-train-00000-of-00001") os.remove(tmp_file_path)
Example #6
Source File: librispeech.py From BERT with Apache License 2.0 | 6 votes |
def generate_data(self, data_dir, tmp_dir, task_id=-1): train_paths = self.training_filepaths( data_dir, self.num_shards, shuffled=False) dev_paths = self.dev_filepaths( data_dir, self.num_dev_shards, shuffled=False) test_paths = self.test_filepaths( data_dir, self.num_test_shards, shuffled=True) generator_utils.generate_files( self.generator(data_dir, tmp_dir, self.TEST_DATASETS), test_paths) if self.use_train_shards_for_dev: all_paths = train_paths + dev_paths generator_utils.generate_files( self.generator(data_dir, tmp_dir, self.TRAIN_DATASETS), all_paths) generator_utils.shuffle_dataset(all_paths) else: generator_utils.generate_dataset_and_shuffle( self.generator(data_dir, tmp_dir, self.TRAIN_DATASETS), train_paths, self.generator(data_dir, tmp_dir, self.DEV_DATASETS), dev_paths)
Example #7
Source File: gym_env.py From BERT with Apache License 2.0 | 6 votes |
def generate_data(self, data_dir, tmp_dir=None, task_id=-1): """Saves the current epoch rollouts to disk, split into train/dev sets.""" if not self._rollouts_by_epoch_and_split[self.current_epoch]: # Data not loaded from disk. self._split_current_epoch() rollouts_by_split = self._rollouts_by_epoch_and_split[self.current_epoch] splits_and_paths = self.splits_and_paths(data_dir) for (split, paths) in splits_and_paths: rollouts = rollouts_by_split[split] num_frames = self._calc_num_frames(rollouts) shard_size = num_frames // len(paths) frame_gen = self._generate_frames(rollouts) for (path_index, path) in enumerate(paths): limit = shard_size # Put the remainder in the last shard to preserve the ordering. if path_index == len(paths) - 1: limit = None generator_utils.generate_files( itertools.islice(frame_gen, limit), [path], cycle_every_n=float("inf") )
Example #8
Source File: timeseries.py From BERT with Apache License 2.0 | 6 votes |
def generate_data(self, data_dir, tmp_dir, task_id=-1): filepath_fns = { problem.DatasetSplit.TRAIN: self.training_filepaths, problem.DatasetSplit.EVAL: self.dev_filepaths, problem.DatasetSplit.TEST: self.test_filepaths, } split_paths = [(split["split"], filepath_fns[split["split"]]( data_dir, split["shards"], shuffled=False)) for split in self.dataset_splits] all_paths = [] for _, paths in split_paths: all_paths.extend(paths) if self.is_generate_per_split: for split, paths in split_paths: generator_utils.generate_files( self.generate_samples(data_dir, tmp_dir, split), paths) else: generator_utils.generate_files( self.generate_samples(data_dir, tmp_dir, problem.DatasetSplit.TRAIN), all_paths) generator_utils.shuffle_dataset(all_paths)
Example #9
Source File: text_problems.py From BERT with Apache License 2.0 | 6 votes |
def generate_data(self, data_dir, tmp_dir, task_id=-1): filepath_fns = { problem.DatasetSplit.TRAIN: self.training_filepaths, problem.DatasetSplit.EVAL: self.dev_filepaths, problem.DatasetSplit.TEST: self.test_filepaths, } split_paths = [(split["split"], filepath_fns[split["split"]]( data_dir, split["shards"], shuffled=self.already_shuffled)) for split in self.dataset_splits] all_paths = [] for _, paths in split_paths: all_paths.extend(paths) if self.is_generate_per_split: for split, paths in split_paths: generator_utils.generate_files( self.generate_encoded_samples(data_dir, tmp_dir, split), paths) else: generator_utils.generate_files( self.generate_encoded_samples( data_dir, tmp_dir, problem.DatasetSplit.TRAIN), all_paths) generator_utils.shuffle_dataset(all_paths, extra_fn=self._pack_fn())
Example #10
Source File: t2t_datagen.py From fine-lm with MIT License | 6 votes |
def generate_data_for_problem(problem): """Generate data for a problem in _SUPPORTED_PROBLEM_GENERATORS.""" training_gen, dev_gen = _SUPPORTED_PROBLEM_GENERATORS[problem] num_shards = FLAGS.num_shards or 10 tf.logging.info("Generating training data for %s.", problem) train_output_files = generator_utils.train_data_filenames( problem + generator_utils.UNSHUFFLED_SUFFIX, FLAGS.data_dir, num_shards) generator_utils.generate_files(training_gen(), train_output_files, FLAGS.max_cases) tf.logging.info("Generating development data for %s.", problem) dev_output_files = generator_utils.dev_data_filenames( problem + generator_utils.UNSHUFFLED_SUFFIX, FLAGS.data_dir, 1) generator_utils.generate_files(dev_gen(), dev_output_files) all_output_files = train_output_files + dev_output_files generator_utils.shuffle_dataset(all_output_files)
Example #11
Source File: generator_utils_test.py From training_results_v0.5 with Apache License 2.0 | 6 votes |
def testGenerateFiles(self): tmp_dir = self.get_temp_dir() (_, tmp_file_path) = tempfile.mkstemp(dir=tmp_dir) tmp_file_name = os.path.basename(tmp_file_path) # Generate a trivial file and assert the file exists. def test_generator(): yield {"inputs": [1], "target": [1]} filenames = generator_utils.train_data_filenames(tmp_file_name, tmp_dir, 1) generator_utils.generate_files(test_generator(), filenames) self.assertTrue(tf.gfile.Exists(tmp_file_path + "-train-00000-of-00001")) # Clean up. os.remove(tmp_file_path + "-train-00000-of-00001") os.remove(tmp_file_path)
Example #12
Source File: librispeech.py From training_results_v0.5 with Apache License 2.0 | 6 votes |
def generate_data(self, data_dir, tmp_dir, task_id=-1): train_paths = self.training_filepaths( data_dir, self.num_shards, shuffled=False) dev_paths = self.dev_filepaths( data_dir, self.num_dev_shards, shuffled=False) test_paths = self.test_filepaths( data_dir, self.num_test_shards, shuffled=True) generator_utils.generate_files( self.generator(data_dir, tmp_dir, self.TEST_DATASETS), test_paths) if self.use_train_shards_for_dev: all_paths = train_paths + dev_paths generator_utils.generate_files( self.generator(data_dir, tmp_dir, self.TRAIN_DATASETS), all_paths) generator_utils.shuffle_dataset(all_paths) else: generator_utils.generate_dataset_and_shuffle( self.generator(data_dir, tmp_dir, self.TRAIN_DATASETS), train_paths, self.generator(data_dir, tmp_dir, self.DEV_DATASETS), dev_paths)
Example #13
Source File: gym_env.py From training_results_v0.5 with Apache License 2.0 | 6 votes |
def generate_data(self, data_dir, tmp_dir=None, task_id=-1): """Saves the current epoch rollouts to disk, split into train/dev sets.""" if not self._rollouts_by_epoch_and_split[self.current_epoch]: # Data not loaded from disk. self._split_current_epoch() rollouts_by_split = self._rollouts_by_epoch_and_split[self.current_epoch] splits_and_paths = self.splits_and_paths(data_dir) for (split, paths) in splits_and_paths: rollouts = rollouts_by_split[split] num_frames = self._calc_num_frames(rollouts) shard_size = num_frames // len(paths) frame_gen = self._generate_frames(rollouts) for (path_index, path) in enumerate(paths): limit = shard_size # Put the remainder in the last shard to preserve the ordering. if path_index == len(paths) - 1: limit = None generator_utils.generate_files( itertools.islice(frame_gen, limit), [path], cycle_every_n=float("inf") )
Example #14
Source File: timeseries.py From training_results_v0.5 with Apache License 2.0 | 6 votes |
def generate_data(self, data_dir, tmp_dir, task_id=-1): filepath_fns = { problem.DatasetSplit.TRAIN: self.training_filepaths, problem.DatasetSplit.EVAL: self.dev_filepaths, problem.DatasetSplit.TEST: self.test_filepaths, } split_paths = [(split["split"], filepath_fns[split["split"]]( data_dir, split["shards"], shuffled=False)) for split in self.dataset_splits] all_paths = [] for _, paths in split_paths: all_paths.extend(paths) if self.is_generate_per_split: for split, paths in split_paths: generator_utils.generate_files( self.generate_samples(data_dir, tmp_dir, split), paths) else: generator_utils.generate_files( self.generate_samples(data_dir, tmp_dir, problem.DatasetSplit.TRAIN), all_paths) generator_utils.shuffle_dataset(all_paths)
Example #15
Source File: text_problems.py From training_results_v0.5 with Apache License 2.0 | 6 votes |
def generate_data(self, data_dir, tmp_dir, task_id=-1): # task_id should be in [0, self.num_output_shards) assert (0 <= task_id) and (task_id < self.num_output_shards) # A task_id is only supposed to write only one output shard, it can operate # over multiple *input* shards. input_files = self._task_id_to_input_files(task_id) output_file = self._task_id_to_output_file(data_dir, task_id) # Which output split is this task writing to? split, _, _ = self._task_id_to_output_split(task_id) # Actually generate examples. generator_utils.generate_files( self._maybe_pack_examples( self.generate_encoded_samples( data_dir, tmp_dir, split, input_files)), [output_file]) # Shuffle the output. generator_utils.shuffle_dataset([output_file])
Example #16
Source File: librispeech_specaugment.py From specAugment with Apache License 2.0 | 6 votes |
def generate_data(self, data_dir, tmp_dir, task_id=-1): train_paths = self.training_filepaths( data_dir, self.num_shards, shuffled=False) dev_paths = self.dev_filepaths( data_dir, self.num_dev_shards, shuffled=False) test_paths = self.test_filepaths( data_dir, self.num_test_shards, shuffled=True) generator_utils.generate_files( self.generator(data_dir, tmp_dir, self.TEST_DATASETS), test_paths) if self.use_train_shards_for_dev: all_paths = train_paths + dev_paths generator_utils.generate_files( self.generator(data_dir, tmp_dir, self.TRAIN_DATASETS), all_paths) generator_utils.shuffle_dataset(all_paths) else: generator_utils.generate_dataset_and_shuffle( self.generator(data_dir, tmp_dir, self.TRAIN_DATASETS), train_paths, self.generator(data_dir, tmp_dir, self.DEV_DATASETS), dev_paths)
Example #17
Source File: glyphazzn.py From magenta with Apache License 2.0 | 6 votes |
def generate_data(self, data_dir, tmp_dir, task_id=-1): filepath_fns = { problem.DatasetSplit.TRAIN: self.training_filepaths, problem.DatasetSplit.EVAL: self.dev_filepaths, problem.DatasetSplit.TEST: self.test_filepaths, } split_paths = [(split['split'], filepath_fns[split['split']]( data_dir, split['shards'], shuffled=False)) for split in self.dataset_splits] all_paths = [] for _, paths in split_paths: all_paths.extend(paths) if self.is_generate_per_split: for split, paths in split_paths: generator_utils.generate_files( self.generate_encoded_samples(data_dir, tmp_dir, split), paths) else: generator_utils.generate_files( self.generate_encoded_samples( data_dir, tmp_dir, problem.DatasetSplit.TRAIN), all_paths) generator_utils.shuffle_dataset(all_paths)
Example #18
Source File: librispeech.py From tensor2tensor with Apache License 2.0 | 6 votes |
def generate_data(self, data_dir, tmp_dir, task_id=-1): train_paths = self.training_filepaths( data_dir, self.num_shards, shuffled=False) dev_paths = self.dev_filepaths( data_dir, self.num_dev_shards, shuffled=False) test_paths = self.test_filepaths( data_dir, self.num_test_shards, shuffled=True) generator_utils.generate_files( self.generator(data_dir, tmp_dir, self.TEST_DATASETS), test_paths) if self.use_train_shards_for_dev: all_paths = train_paths + dev_paths generator_utils.generate_files( self.generator(data_dir, tmp_dir, self.TRAIN_DATASETS), all_paths) generator_utils.shuffle_dataset(all_paths) else: generator_utils.generate_dataset_and_shuffle( self.generator(data_dir, tmp_dir, self.TRAIN_DATASETS), train_paths, self.generator(data_dir, tmp_dir, self.DEV_DATASETS), dev_paths)
Example #19
Source File: gym_env.py From tensor2tensor with Apache License 2.0 | 6 votes |
def generate_data(self, data_dir, tmp_dir=None, task_id=-1): """Saves the current epoch rollouts to disk, split into train/dev sets.""" if not self._rollouts_by_epoch_and_split[self.current_epoch]: # Data not loaded from disk. self._split_current_epoch() rollouts_by_split = self._rollouts_by_epoch_and_split[self.current_epoch] splits_and_paths = self.splits_and_paths(data_dir) for (split, paths) in splits_and_paths: rollouts = rollouts_by_split[split] num_frames = self._calc_num_frames(rollouts) shard_size = num_frames // len(paths) frame_gen = self._generate_frames(rollouts) for (path_index, path) in enumerate(paths): limit = shard_size # Put the remainder in the last shard to preserve the ordering. if path_index == len(paths) - 1: limit = None generator_utils.generate_files( itertools.islice(frame_gen, limit), [path], cycle_every_n=float("inf") )
Example #20
Source File: timeseries.py From fine-lm with MIT License | 6 votes |
def generate_data(self, data_dir, tmp_dir, task_id=-1): filepath_fns = { problem.DatasetSplit.TRAIN: self.training_filepaths, problem.DatasetSplit.EVAL: self.dev_filepaths, problem.DatasetSplit.TEST: self.test_filepaths, } split_paths = [(split["split"], filepath_fns[split["split"]]( data_dir, split["shards"], shuffled=False)) for split in self.dataset_splits] all_paths = [] for _, paths in split_paths: all_paths.extend(paths) if self.is_generate_per_split: for split, paths in split_paths: generator_utils.generate_files( self.generate_samples(data_dir, tmp_dir, split), paths) else: generator_utils.generate_files( self.generate_samples(data_dir, tmp_dir, problem.DatasetSplit.TRAIN), all_paths) generator_utils.shuffle_dataset(all_paths)
Example #21
Source File: text_problems.py From fine-lm with MIT License | 6 votes |
def generate_data(self, data_dir, tmp_dir, task_id=-1): """Generates training/dev data. Args: data_dir: a string tmp_dir: a string task_id: an optional integer Returns: shard or shards for which data was generated. """ tf.logging.info("generate_data task_id=%s" % task_id) encoder = self.get_or_create_vocab(data_dir, tmp_dir) assert task_id >= 0 and task_id < self.num_generate_tasks if task_id < self.num_train_shards: out_file = self.training_filepaths( data_dir, self.num_train_shards, shuffled=False)[task_id] else: out_file = self.dev_filepaths( data_dir, self.num_dev_shards, shuffled=False)[task_id - self.num_train_shards] generator_utils.generate_files( self.example_generator(encoder, tmp_dir, task_id), [out_file]) generator_utils.shuffle_dataset([out_file])
Example #22
Source File: librispeech.py From fine-lm with MIT License | 6 votes |
def generate_data(self, data_dir, tmp_dir, task_id=-1): train_paths = self.training_filepaths( data_dir, self.num_shards, shuffled=False) dev_paths = self.dev_filepaths( data_dir, self.num_dev_shards, shuffled=False) test_paths = self.test_filepaths( data_dir, self.num_test_shards, shuffled=True) generator_utils.generate_files( self.generator(data_dir, tmp_dir, self.TEST_DATASETS), test_paths) if self.use_train_shards_for_dev: all_paths = train_paths + dev_paths generator_utils.generate_files( self.generator(data_dir, tmp_dir, self.TRAIN_DATASETS), all_paths) generator_utils.shuffle_dataset(all_paths) else: generator_utils.generate_dataset_and_shuffle( self.generator(data_dir, tmp_dir, self.TRAIN_DATASETS), train_paths, self.generator(data_dir, tmp_dir, self.DEV_DATASETS), dev_paths)
Example #23
Source File: common_voice.py From fine-lm with MIT License | 6 votes |
def generate_data(self, data_dir, tmp_dir, task_id=-1): train_paths = self.training_filepaths( data_dir, self.num_shards, shuffled=False) dev_paths = self.dev_filepaths( data_dir, self.num_dev_shards, shuffled=False) test_paths = self.test_filepaths( data_dir, self.num_test_shards, shuffled=True) generator_utils.generate_files( self.generator(data_dir, tmp_dir, self.TEST_DATASETS), test_paths) if self.use_train_shards_for_dev: all_paths = train_paths + dev_paths generator_utils.generate_files( self.generator(data_dir, tmp_dir, self.TRAIN_DATASETS), all_paths) generator_utils.shuffle_dataset(all_paths) else: generator_utils.generate_dataset_and_shuffle( self.generator(data_dir, tmp_dir, self.TRAIN_DATASETS), train_paths, self.generator(data_dir, tmp_dir, self.DEV_DATASETS), dev_paths)
Example #24
Source File: generator_utils_test.py From tensor2tensor with Apache License 2.0 | 6 votes |
def testGenerateFiles(self): tmp_dir = self.get_temp_dir() (_, tmp_file_path) = tempfile.mkstemp(dir=tmp_dir) tmp_file_name = os.path.basename(tmp_file_path) # Generate a trivial file and assert the file exists. def test_generator(): yield {"inputs": [1], "target": [1]} filenames = generator_utils.train_data_filenames(tmp_file_name, tmp_dir, 1) generator_utils.generate_files(test_generator(), filenames) self.assertTrue(tf.gfile.Exists(tmp_file_path + "-train-00000-of-00001")) # Clean up. os.remove(tmp_file_path + "-train-00000-of-00001") os.remove(tmp_file_path)
Example #25
Source File: data_reader_test.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def generate_data(self, data_dir, tmp_dir, task_id=-1): train_paths = self.training_filepaths(data_dir, 1, shuffled=True) dev_paths = self.dev_filepaths(data_dir, 1, shuffled=True) generator_utils.generate_files( self.generator(data_dir, tmp_dir, True), train_paths) generator_utils.generate_files( self.generator(data_dir, tmp_dir, False), dev_paths)
Example #26
Source File: env_problem.py From BERT with Apache License 2.0 | 5 votes |
def generate_data(self, data_dir, tmp_dir, task_id=-1): # List of files to generate data in. # NOTE: We don't want to shuffle, so we mark the files as shuffled. files_list = [] for split, num_shards in self.num_shards.items(): files_list.extend(self.data_filepaths(split, data_dir, num_shards, True)) # At this point some trajectories haven't finished. However we still want to # write those down. # A simple way of doing this is to call `self.reset()` here, this will make # all the envs take one (extra) step, but would be a clean way to do it. # # self.reset() self.trajectories.complete_all_trajectories() # Write the completed data into these files num_completed_trajectories = self.trajectories.num_completed_trajectories num_shards = len(files_list) if num_completed_trajectories < num_shards: tf.logging.warning( "Number of completed trajectories [%d] is less than " "the number of shards [%d], some shards maybe empty.", num_completed_trajectories, num_shards) for i, f in enumerate(files_list[:num_completed_trajectories]): # Start at index i of completed trajectories and take every `num_shards` # trajectory. This ensures that the data is approximately a balanced # partition of completed trajectories, also because of the above slicing # of files_list, i will be a valid index into completed_trajectories. trajectories_to_write = self.trajectories.completed_trajectories[ i::num_shards] # Convert each trajectory from `trajectories_to_write` to a sequence of # time-steps and then send that generator to `generate_files`. # `cycle_every_n` isn't needed since file list given to it is a singleton. generator_utils.generate_files( self._generate_time_steps(trajectories_to_write), [f])
Example #27
Source File: video_utils.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def generate_data(self, data_dir, tmp_dir, task_id=-1): """The function generating the data.""" filepath_fns = { problem.DatasetSplit.TRAIN: self.training_filepaths, problem.DatasetSplit.EVAL: self.dev_filepaths, problem.DatasetSplit.TEST: self.test_filepaths, } # We set shuffled=True as we don't want to shuffle on disk later. split_paths = [(split["split"], filepath_fns[split["split"]]( data_dir, split["shards"], shuffled=True)) for split in self.dataset_splits] all_paths = [] for _, paths in split_paths: all_paths.extend(paths) if self.is_generate_per_split: for split, paths in split_paths: generator_utils.generate_files( self.generate_encoded_samples(data_dir, tmp_dir, split), paths, cycle_every_n=self.total_number_of_frames // len(paths)) else: generator_utils.generate_files( self.generate_encoded_samples(data_dir, tmp_dir, problem.DatasetSplit.TRAIN), all_paths, cycle_every_n=self.total_number_of_frames // len(all_paths)) # TODO(lukaszkaiser): remove this version after everything is ported.
Example #28
Source File: algorithmic.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def generate_data(self, data_dir, tmp_dir, task_id=-1): """Ganerate data for this problem.""" del tmp_dir, task_id identity_problem = AlgorithmicIdentityBinary40() utils.generate_files( identity_problem.generator(self.num_symbols, 40, 100000), self.training_filepaths(data_dir, 1, shuffled=True), 100) utils.generate_files( identity_problem.generator(self.num_symbols, 400, 10000), self.dev_filepaths(data_dir, 1, shuffled=True), 100)
Example #29
Source File: celeba.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def generate_data(self, data_dir, tmp_dir, task_id=-1): train_gen = self.generator(tmp_dir, 162770) train_paths = self.training_filepaths( data_dir, self.train_shards, shuffled=False) generator_utils.generate_files(train_gen, train_paths) dev_gen = self.generator(tmp_dir, 19867, 162770) dev_paths = self.dev_filepaths(data_dir, self.dev_shards, shuffled=False) generator_utils.generate_files(dev_gen, dev_paths) test_gen = self.generator(tmp_dir, 19962, 162770+19867) test_paths = self.test_filepaths(data_dir, self.test_shards, shuffled=False) generator_utils.generate_files(test_gen, test_paths) generator_utils.shuffle_dataset(train_paths + dev_paths + test_paths)
Example #30
Source File: video_utils.py From fine-lm with MIT License | 5 votes |
def generate_data(self, data_dir, tmp_dir, task_id=-1): """The function generating the data.""" filepath_fns = { problem.DatasetSplit.TRAIN: self.training_filepaths, problem.DatasetSplit.EVAL: self.dev_filepaths, problem.DatasetSplit.TEST: self.test_filepaths, } # We set shuffled=True as we don't want to shuffle on disk later. split_paths = [(split["split"], filepath_fns[split["split"]]( data_dir, split["shards"], shuffled=True)) for split in self.dataset_splits] all_paths = [] for _, paths in split_paths: all_paths.extend(paths) if self.is_generate_per_split: for split, paths in split_paths: generator_utils.generate_files( self.generate_encoded_samples_debug( data_dir, tmp_dir, split), paths, cycle_every_n=self.total_number_of_frames // len(paths)) else: generator_utils.generate_files( self.generate_encoded_samples_debug( data_dir, tmp_dir, problem.DatasetSplit.TRAIN), all_paths, cycle_every_n=self.total_number_of_frames // len(all_paths)) # TODO(lukaszkaiser): remove this version after everything is ported.