Python tensor2tensor.data_generators.generator_utils.UNSHUFFLED_SUFFIX Examples
The following are 18
code examples of tensor2tensor.data_generators.generator_utils.UNSHUFFLED_SUFFIX().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
tensor2tensor.data_generators.generator_utils
, or try the search function
.
Example #1
Source File: t2t_datagen.py From fine-lm with MIT License | 6 votes |
def generate_data_for_problem(problem): """Generate data for a problem in _SUPPORTED_PROBLEM_GENERATORS.""" training_gen, dev_gen = _SUPPORTED_PROBLEM_GENERATORS[problem] num_shards = FLAGS.num_shards or 10 tf.logging.info("Generating training data for %s.", problem) train_output_files = generator_utils.train_data_filenames( problem + generator_utils.UNSHUFFLED_SUFFIX, FLAGS.data_dir, num_shards) generator_utils.generate_files(training_gen(), train_output_files, FLAGS.max_cases) tf.logging.info("Generating development data for %s.", problem) dev_output_files = generator_utils.dev_data_filenames( problem + generator_utils.UNSHUFFLED_SUFFIX, FLAGS.data_dir, 1) generator_utils.generate_files(dev_gen(), dev_output_files) all_output_files = train_output_files + dev_output_files generator_utils.shuffle_dataset(all_output_files)
Example #2
Source File: problem.py From BERT with Apache License 2.0 | 5 votes |
def training_filepaths(self, data_dir, num_shards, shuffled): file_basename = self.dataset_filename() if not shuffled: file_basename += generator_utils.UNSHUFFLED_SUFFIX return generator_utils.train_data_filenames(file_basename, data_dir, num_shards)
Example #3
Source File: t2t_datagen.py From language with Apache License 2.0 | 5 votes |
def generate_data_for_problem(problem): """Generate data for a problem in _SUPPORTED_PROBLEM_GENERATORS.""" training_gen, dev_gen, test_gen = _SUPPORTED_PROBLEM_GENERATORS[problem] num_train_shards = FLAGS.num_shards or 10 tf.logging.info("Generating training data for %s.", problem) train_output_files = generator_utils.train_data_filenames( problem + generator_utils.UNSHUFFLED_SUFFIX, FLAGS.data_dir, num_train_shards) generator_utils.generate_files(training_gen(), train_output_files, FLAGS.max_cases) num_dev_shards = int(num_train_shards * 0.1) tf.logging.info("Generating development data for %s.", problem) dev_output_files = generator_utils.dev_data_filenames( problem + generator_utils.UNSHUFFLED_SUFFIX, FLAGS.data_dir, num_dev_shards) generator_utils.generate_files(dev_gen(), dev_output_files) num_test_shards = int(num_train_shards * 0.1) test_output_files = [] test_gen_data = test_gen() if test_gen_data is not None: tf.logging.info("Generating test data for %s.", problem) test_output_files = generator_utils.test_data_filenames( problem + generator_utils.UNSHUFFLED_SUFFIX, FLAGS.data_dir, num_test_shards) generator_utils.generate_files(test_gen_data, test_output_files) all_output_files = train_output_files + dev_output_files + test_output_files generator_utils.shuffle_dataset(all_output_files)
Example #4
Source File: t2t_datagen.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def generate_data_for_problem(problem): """Generate data for a problem in _SUPPORTED_PROBLEM_GENERATORS.""" training_gen, dev_gen, test_gen = _SUPPORTED_PROBLEM_GENERATORS[problem] num_train_shards = FLAGS.num_shards or 10 tf.logging.info("Generating training data for %s.", problem) train_output_files = generator_utils.train_data_filenames( problem + generator_utils.UNSHUFFLED_SUFFIX, FLAGS.data_dir, num_train_shards) generator_utils.generate_files(training_gen(), train_output_files, FLAGS.max_cases) num_dev_shards = int(num_train_shards * 0.1) tf.logging.info("Generating development data for %s.", problem) dev_output_files = generator_utils.dev_data_filenames( problem + generator_utils.UNSHUFFLED_SUFFIX, FLAGS.data_dir, num_dev_shards) generator_utils.generate_files(dev_gen(), dev_output_files) num_test_shards = int(num_train_shards * 0.1) test_output_files = [] test_gen_data = test_gen() if test_gen_data is not None: tf.logging.info("Generating test data for %s.", problem) test_output_files = generator_utils.test_data_filenames( problem + generator_utils.UNSHUFFLED_SUFFIX, FLAGS.data_dir, num_test_shards) generator_utils.generate_files(test_gen_data, test_output_files) all_output_files = train_output_files + dev_output_files + test_output_files generator_utils.shuffle_dataset(all_output_files)
Example #5
Source File: problem.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def test_filepaths(self, data_dir, num_shards, shuffled): file_basename = self.dataset_filename() if not shuffled: file_basename += generator_utils.UNSHUFFLED_SUFFIX return generator_utils.test_data_filenames(file_basename, data_dir, num_shards)
Example #6
Source File: problem.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def dev_filepaths(self, data_dir, num_shards, shuffled): file_basename = self.dataset_filename() if not shuffled: file_basename += generator_utils.UNSHUFFLED_SUFFIX return generator_utils.dev_data_filenames(file_basename, data_dir, num_shards)
Example #7
Source File: problem.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def training_filepaths(self, data_dir, num_shards, shuffled): file_basename = self.dataset_filename() if not shuffled: file_basename += generator_utils.UNSHUFFLED_SUFFIX return generator_utils.train_data_filenames(file_basename, data_dir, num_shards)
Example #8
Source File: t2t_datagen.py From training_results_v0.5 with Apache License 2.0 | 5 votes |
def generate_data_for_problem(problem): """Generate data for a problem in _SUPPORTED_PROBLEM_GENERATORS.""" training_gen, dev_gen, test_gen = _SUPPORTED_PROBLEM_GENERATORS[problem] num_train_shards = FLAGS.num_shards or 10 tf.logging.info("Generating training data for %s.", problem) train_output_files = generator_utils.train_data_filenames( problem + generator_utils.UNSHUFFLED_SUFFIX, FLAGS.data_dir, num_train_shards) generator_utils.generate_files(training_gen(), train_output_files, FLAGS.max_cases) num_dev_shards = int(num_train_shards * 0.1) tf.logging.info("Generating development data for %s.", problem) dev_output_files = generator_utils.dev_data_filenames( problem + generator_utils.UNSHUFFLED_SUFFIX, FLAGS.data_dir, num_dev_shards) generator_utils.generate_files(dev_gen(), dev_output_files) num_test_shards = int(num_train_shards * 0.1) test_output_files = [] test_gen_data = test_gen() if test_gen_data is not None: tf.logging.info("Generating test data for %s.", problem) test_output_files = generator_utils.test_data_filenames( problem + generator_utils.UNSHUFFLED_SUFFIX, FLAGS.data_dir, num_test_shards) generator_utils.generate_files(test_gen_data, test_output_files) all_output_files = train_output_files + dev_output_files + test_output_files generator_utils.shuffle_dataset(all_output_files)
Example #9
Source File: problem.py From BERT with Apache License 2.0 | 5 votes |
def test_filepaths(self, data_dir, num_shards, shuffled): file_basename = self.dataset_filename() if not shuffled: file_basename += generator_utils.UNSHUFFLED_SUFFIX return generator_utils.test_data_filenames(file_basename, data_dir, num_shards)
Example #10
Source File: problem.py From BERT with Apache License 2.0 | 5 votes |
def dev_filepaths(self, data_dir, num_shards, shuffled): file_basename = self.dataset_filename() if not shuffled: file_basename += generator_utils.UNSHUFFLED_SUFFIX return generator_utils.dev_data_filenames(file_basename, data_dir, num_shards)
Example #11
Source File: t2t_datagen.py From BERT with Apache License 2.0 | 5 votes |
def generate_data_for_problem(problem): """Generate data for a problem in _SUPPORTED_PROBLEM_GENERATORS.""" training_gen, dev_gen, test_gen = _SUPPORTED_PROBLEM_GENERATORS[problem] num_train_shards = FLAGS.num_shards or 10 tf.logging.info("Generating training data for %s.", problem) train_output_files = generator_utils.train_data_filenames( problem + generator_utils.UNSHUFFLED_SUFFIX, FLAGS.data_dir, num_train_shards) generator_utils.generate_files(training_gen(), train_output_files, FLAGS.max_cases) num_dev_shards = int(num_train_shards * 0.1) tf.logging.info("Generating development data for %s.", problem) dev_output_files = generator_utils.dev_data_filenames( problem + generator_utils.UNSHUFFLED_SUFFIX, FLAGS.data_dir, num_dev_shards) generator_utils.generate_files(dev_gen(), dev_output_files) num_test_shards = int(num_train_shards * 0.1) test_output_files = [] test_gen_data = test_gen() if test_gen_data is not None: tf.logging.info("Generating test data for %s.", problem) test_output_files = generator_utils.test_data_filenames( problem + generator_utils.UNSHUFFLED_SUFFIX, FLAGS.data_dir, num_test_shards) generator_utils.generate_files(test_gen_data, test_output_files) all_output_files = train_output_files + dev_output_files + test_output_files generator_utils.shuffle_dataset(all_output_files)
Example #12
Source File: problem.py From tensor2tensor with Apache License 2.0 | 5 votes |
def test_filepaths(self, data_dir, num_shards, shuffled): file_basename = self.dataset_filename() if not shuffled: file_basename += generator_utils.UNSHUFFLED_SUFFIX return generator_utils.test_data_filenames(file_basename, data_dir, num_shards)
Example #13
Source File: problem.py From tensor2tensor with Apache License 2.0 | 5 votes |
def dev_filepaths(self, data_dir, num_shards, shuffled): file_basename = self.dataset_filename() if not shuffled: file_basename += generator_utils.UNSHUFFLED_SUFFIX return generator_utils.dev_data_filenames(file_basename, data_dir, num_shards)
Example #14
Source File: problem.py From tensor2tensor with Apache License 2.0 | 5 votes |
def training_filepaths(self, data_dir, num_shards, shuffled): file_basename = self.dataset_filename() if not shuffled: file_basename += generator_utils.UNSHUFFLED_SUFFIX return generator_utils.train_data_filenames(file_basename, data_dir, num_shards)
Example #15
Source File: t2t_datagen.py From tensor2tensor with Apache License 2.0 | 5 votes |
def generate_data_for_problem(problem): """Generate data for a problem in _SUPPORTED_PROBLEM_GENERATORS.""" training_gen, dev_gen, test_gen = _SUPPORTED_PROBLEM_GENERATORS[problem] num_train_shards = FLAGS.num_shards or 10 tf.logging.info("Generating training data for %s.", problem) train_output_files = generator_utils.train_data_filenames( problem + generator_utils.UNSHUFFLED_SUFFIX, FLAGS.data_dir, num_train_shards) generator_utils.generate_files(training_gen(), train_output_files, FLAGS.max_cases) num_dev_shards = int(num_train_shards * 0.1) tf.logging.info("Generating development data for %s.", problem) dev_output_files = generator_utils.dev_data_filenames( problem + generator_utils.UNSHUFFLED_SUFFIX, FLAGS.data_dir, num_dev_shards) generator_utils.generate_files(dev_gen(), dev_output_files) num_test_shards = int(num_train_shards * 0.1) test_output_files = [] test_gen_data = test_gen() if test_gen_data is not None: tf.logging.info("Generating test data for %s.", problem) test_output_files = generator_utils.test_data_filenames( problem + generator_utils.UNSHUFFLED_SUFFIX, FLAGS.data_dir, num_test_shards) generator_utils.generate_files(test_gen_data, test_output_files) all_output_files = train_output_files + dev_output_files + test_output_files generator_utils.shuffle_dataset(all_output_files)
Example #16
Source File: problem.py From fine-lm with MIT License | 5 votes |
def test_filepaths(self, data_dir, num_shards, shuffled): file_basename = self.dataset_filename() if not shuffled: file_basename += generator_utils.UNSHUFFLED_SUFFIX return generator_utils.test_data_filenames(file_basename, data_dir, num_shards)
Example #17
Source File: problem.py From fine-lm with MIT License | 5 votes |
def dev_filepaths(self, data_dir, num_shards, shuffled): file_basename = self.dataset_filename() if not shuffled: file_basename += generator_utils.UNSHUFFLED_SUFFIX return generator_utils.dev_data_filenames(file_basename, data_dir, num_shards)
Example #18
Source File: problem.py From fine-lm with MIT License | 5 votes |
def training_filepaths(self, data_dir, num_shards, shuffled): file_basename = self.dataset_filename() if not shuffled: file_basename += generator_utils.UNSHUFFLED_SUFFIX return generator_utils.train_data_filenames(file_basename, data_dir, num_shards)