Python numpy.core.numeric.concatenate() Examples

The following are 30 code examples of numpy.core.numeric.concatenate(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module numpy.core.numeric , or try the search function .
Example #1
Source File: defmatrix.py    From vnpy_crypto with MIT License 6 votes vote down vote up
def _from_string(str, gdict, ldict):
    rows = str.split(';')
    rowtup = []
    for row in rows:
        trow = row.split(',')
        newrow = []
        for x in trow:
            newrow.extend(x.split())
        trow = newrow
        coltup = []
        for col in trow:
            col = col.strip()
            try:
                thismat = ldict[col]
            except KeyError:
                try:
                    thismat = gdict[col]
                except KeyError:
                    raise KeyError("%s not found" % (col,))

            coltup.append(thismat)
        rowtup.append(concatenate(coltup, axis=-1))
    return concatenate(rowtup, axis=0) 
Example #2
Source File: defmatrix.py    From lambda-packs with MIT License 6 votes vote down vote up
def _from_string(str, gdict, ldict):
    rows = str.split(';')
    rowtup = []
    for row in rows:
        trow = row.split(',')
        newrow = []
        for x in trow:
            newrow.extend(x.split())
        trow = newrow
        coltup = []
        for col in trow:
            col = col.strip()
            try:
                thismat = ldict[col]
            except KeyError:
                try:
                    thismat = gdict[col]
                except KeyError:
                    raise KeyError("%s not found" % (col,))

            coltup.append(thismat)
        rowtup.append(concatenate(coltup, axis=-1))
    return concatenate(rowtup, axis=0) 
Example #3
Source File: defmatrix.py    From lambda-packs with MIT License 6 votes vote down vote up
def _from_string(str, gdict, ldict):
    rows = str.split(';')
    rowtup = []
    for row in rows:
        trow = row.split(',')
        newrow = []
        for x in trow:
            newrow.extend(x.split())
        trow = newrow
        coltup = []
        for col in trow:
            col = col.strip()
            try:
                thismat = ldict[col]
            except KeyError:
                try:
                    thismat = gdict[col]
                except KeyError:
                    raise KeyError("%s not found" % (col,))

            coltup.append(thismat)
        rowtup.append(concatenate(coltup, axis=-1))
    return concatenate(rowtup, axis=0) 
Example #4
Source File: defmatrix.py    From coffeegrindsize with MIT License 6 votes vote down vote up
def _from_string(str, gdict, ldict):
    rows = str.split(';')
    rowtup = []
    for row in rows:
        trow = row.split(',')
        newrow = []
        for x in trow:
            newrow.extend(x.split())
        trow = newrow
        coltup = []
        for col in trow:
            col = col.strip()
            try:
                thismat = ldict[col]
            except KeyError:
                try:
                    thismat = gdict[col]
                except KeyError:
                    raise KeyError("%s not found" % (col,))

            coltup.append(thismat)
        rowtup.append(concatenate(coltup, axis=-1))
    return concatenate(rowtup, axis=0) 
Example #5
Source File: defmatrix.py    From recruit with Apache License 2.0 6 votes vote down vote up
def _from_string(str, gdict, ldict):
    rows = str.split(';')
    rowtup = []
    for row in rows:
        trow = row.split(',')
        newrow = []
        for x in trow:
            newrow.extend(x.split())
        trow = newrow
        coltup = []
        for col in trow:
            col = col.strip()
            try:
                thismat = ldict[col]
            except KeyError:
                try:
                    thismat = gdict[col]
                except KeyError:
                    raise KeyError("%s not found" % (col,))

            coltup.append(thismat)
        rowtup.append(concatenate(coltup, axis=-1))
    return concatenate(rowtup, axis=0) 
Example #6
Source File: defmatrix.py    From auto-alt-text-lambda-api with MIT License 6 votes vote down vote up
def _from_string(str, gdict, ldict):
    rows = str.split(';')
    rowtup = []
    for row in rows:
        trow = row.split(',')
        newrow = []
        for x in trow:
            newrow.extend(x.split())
        trow = newrow
        coltup = []
        for col in trow:
            col = col.strip()
            try:
                thismat = ldict[col]
            except KeyError:
                try:
                    thismat = gdict[col]
                except KeyError:
                    raise KeyError("%s not found" % (col,))

            coltup.append(thismat)
        rowtup.append(concatenate(coltup, axis=-1))
    return concatenate(rowtup, axis=0) 
Example #7
Source File: defmatrix.py    From elasticintel with GNU General Public License v3.0 6 votes vote down vote up
def _from_string(str, gdict, ldict):
    rows = str.split(';')
    rowtup = []
    for row in rows:
        trow = row.split(',')
        newrow = []
        for x in trow:
            newrow.extend(x.split())
        trow = newrow
        coltup = []
        for col in trow:
            col = col.strip()
            try:
                thismat = ldict[col]
            except KeyError:
                try:
                    thismat = gdict[col]
                except KeyError:
                    raise KeyError("%s not found" % (col,))

            coltup.append(thismat)
        rowtup.append(concatenate(coltup, axis=-1))
    return concatenate(rowtup, axis=0) 
Example #8
Source File: defmatrix.py    From Computable with MIT License 6 votes vote down vote up
def _from_string(str, gdict, ldict):
    rows = str.split(';')
    rowtup = []
    for row in rows:
        trow = row.split(',')
        newrow = []
        for x in trow:
            newrow.extend(x.split())
        trow = newrow
        coltup = []
        for col in trow:
            col = col.strip()
            try:
                thismat = ldict[col]
            except KeyError:
                try:
                    thismat = gdict[col]
                except KeyError:
                    raise KeyError("%s not found" % (col,))

            coltup.append(thismat)
        rowtup.append(concatenate(coltup, axis=-1))
    return concatenate(rowtup, axis=0) 
Example #9
Source File: defmatrix.py    From Splunking-Crime with GNU Affero General Public License v3.0 6 votes vote down vote up
def _from_string(str, gdict, ldict):
    rows = str.split(';')
    rowtup = []
    for row in rows:
        trow = row.split(',')
        newrow = []
        for x in trow:
            newrow.extend(x.split())
        trow = newrow
        coltup = []
        for col in trow:
            col = col.strip()
            try:
                thismat = ldict[col]
            except KeyError:
                try:
                    thismat = gdict[col]
                except KeyError:
                    raise KeyError("%s not found" % (col,))

            coltup.append(thismat)
        rowtup.append(concatenate(coltup, axis=-1))
    return concatenate(rowtup, axis=0) 
Example #10
Source File: defmatrix.py    From Mastering-Elasticsearch-7.0 with MIT License 6 votes vote down vote up
def _from_string(str, gdict, ldict):
    rows = str.split(';')
    rowtup = []
    for row in rows:
        trow = row.split(',')
        newrow = []
        for x in trow:
            newrow.extend(x.split())
        trow = newrow
        coltup = []
        for col in trow:
            col = col.strip()
            try:
                thismat = ldict[col]
            except KeyError:
                try:
                    thismat = gdict[col]
                except KeyError:
                    raise KeyError("%s not found" % (col,))

            coltup.append(thismat)
        rowtup.append(concatenate(coltup, axis=-1))
    return concatenate(rowtup, axis=0) 
Example #11
Source File: defmatrix.py    From GraphicDesignPatternByPython with MIT License 6 votes vote down vote up
def _from_string(str, gdict, ldict):
    rows = str.split(';')
    rowtup = []
    for row in rows:
        trow = row.split(',')
        newrow = []
        for x in trow:
            newrow.extend(x.split())
        trow = newrow
        coltup = []
        for col in trow:
            col = col.strip()
            try:
                thismat = ldict[col]
            except KeyError:
                try:
                    thismat = gdict[col]
                except KeyError:
                    raise KeyError("%s not found" % (col,))

            coltup.append(thismat)
        rowtup.append(concatenate(coltup, axis=-1))
    return concatenate(rowtup, axis=0) 
Example #12
Source File: defmatrix.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 6 votes vote down vote up
def _from_string(str, gdict, ldict):
    rows = str.split(';')
    rowtup = []
    for row in rows:
        trow = row.split(',')
        newrow = []
        for x in trow:
            newrow.extend(x.split())
        trow = newrow
        coltup = []
        for col in trow:
            col = col.strip()
            try:
                thismat = ldict[col]
            except KeyError:
                try:
                    thismat = gdict[col]
                except KeyError:
                    raise KeyError("%s not found" % (col,))

            coltup.append(thismat)
        rowtup.append(concatenate(coltup, axis=-1))
    return concatenate(rowtup, axis=0) 
Example #13
Source File: defmatrix.py    From ImageFusion with MIT License 6 votes vote down vote up
def _from_string(str, gdict, ldict):
    rows = str.split(';')
    rowtup = []
    for row in rows:
        trow = row.split(',')
        newrow = []
        for x in trow:
            newrow.extend(x.split())
        trow = newrow
        coltup = []
        for col in trow:
            col = col.strip()
            try:
                thismat = ldict[col]
            except KeyError:
                try:
                    thismat = gdict[col]
                except KeyError:
                    raise KeyError("%s not found" % (col,))

            coltup.append(thismat)
        rowtup.append(concatenate(coltup, axis=-1))
    return concatenate(rowtup, axis=0) 
Example #14
Source File: defmatrix.py    From Fluid-Designer with GNU General Public License v3.0 6 votes vote down vote up
def _from_string(str, gdict, ldict):
    rows = str.split(';')
    rowtup = []
    for row in rows:
        trow = row.split(',')
        newrow = []
        for x in trow:
            newrow.extend(x.split())
        trow = newrow
        coltup = []
        for col in trow:
            col = col.strip()
            try:
                thismat = ldict[col]
            except KeyError:
                try:
                    thismat = gdict[col]
                except KeyError:
                    raise KeyError("%s not found" % (col,))

            coltup.append(thismat)
        rowtup.append(concatenate(coltup, axis=-1))
    return concatenate(rowtup, axis=0) 
Example #15
Source File: defmatrix.py    From pySINDy with MIT License 6 votes vote down vote up
def _from_string(str, gdict, ldict):
    rows = str.split(';')
    rowtup = []
    for row in rows:
        trow = row.split(',')
        newrow = []
        for x in trow:
            newrow.extend(x.split())
        trow = newrow
        coltup = []
        for col in trow:
            col = col.strip()
            try:
                thismat = ldict[col]
            except KeyError:
                try:
                    thismat = gdict[col]
                except KeyError:
                    raise KeyError("%s not found" % (col,))

            coltup.append(thismat)
        rowtup.append(concatenate(coltup, axis=-1))
    return concatenate(rowtup, axis=0) 
Example #16
Source File: defmatrix.py    From mxnet-lambda with Apache License 2.0 6 votes vote down vote up
def _from_string(str, gdict, ldict):
    rows = str.split(';')
    rowtup = []
    for row in rows:
        trow = row.split(',')
        newrow = []
        for x in trow:
            newrow.extend(x.split())
        trow = newrow
        coltup = []
        for col in trow:
            col = col.strip()
            try:
                thismat = ldict[col]
            except KeyError:
                try:
                    thismat = gdict[col]
                except KeyError:
                    raise KeyError("%s not found" % (col,))

            coltup.append(thismat)
        rowtup.append(concatenate(coltup, axis=-1))
    return concatenate(rowtup, axis=0) 
Example #17
Source File: utils.py    From ProxImaL with MIT License 6 votes vote down vote up
def _stack(arrays, axis=0):
        arrays = [np.asanyarray(arr) for arr in arrays]
        if not arrays:
            raise ValueError('need at least one array to stack')

        shapes = set(arr.shape for arr in arrays)
        if len(shapes) != 1:
            raise ValueError('all input arrays must have the same shape')

        result_ndim = arrays[0].ndim + 1
        if not -result_ndim <= axis < result_ndim:
            msg = 'axis {0} out of bounds [-{1}, {1})'.format(axis, result_ndim)
            raise np.IndexError(msg)
        if axis < 0:
            axis += result_ndim

        sl = (slice(None),) * axis + (numeric.newaxis,)
        expanded_arrays = [arr[sl] for arr in arrays]
        return numeric.concatenate(expanded_arrays, axis=axis) 
Example #18
Source File: shape_base.py    From recruit with Apache License 2.0 5 votes vote down vote up
def column_stack(tup):
    """
    Stack 1-D arrays as columns into a 2-D array.

    Take a sequence of 1-D arrays and stack them as columns
    to make a single 2-D array. 2-D arrays are stacked as-is,
    just like with `hstack`.  1-D arrays are turned into 2-D columns
    first.

    Parameters
    ----------
    tup : sequence of 1-D or 2-D arrays.
        Arrays to stack. All of them must have the same first dimension.

    Returns
    -------
    stacked : 2-D array
        The array formed by stacking the given arrays.

    See Also
    --------
    stack, hstack, vstack, concatenate

    Examples
    --------
    >>> a = np.array((1,2,3))
    >>> b = np.array((2,3,4))
    >>> np.column_stack((a,b))
    array([[1, 2],
           [2, 3],
           [3, 4]])

    """
    _warn_for_nonsequence(tup)
    arrays = []
    for v in tup:
        arr = array(v, copy=False, subok=True)
        if arr.ndim < 2:
            arr = array(arr, copy=False, subok=True, ndmin=2).T
        arrays.append(arr)
    return _nx.concatenate(arrays, 1) 
Example #19
Source File: shape_base.py    From Fluid-Designer with GNU General Public License v3.0 5 votes vote down vote up
def column_stack(tup):
    """
    Stack 1-D arrays as columns into a 2-D array.

    Take a sequence of 1-D arrays and stack them as columns
    to make a single 2-D array. 2-D arrays are stacked as-is,
    just like with `hstack`.  1-D arrays are turned into 2-D columns
    first.

    Parameters
    ----------
    tup : sequence of 1-D or 2-D arrays.
        Arrays to stack. All of them must have the same first dimension.

    Returns
    -------
    stacked : 2-D array
        The array formed by stacking the given arrays.

    See Also
    --------
    hstack, vstack, concatenate

    Examples
    --------
    >>> a = np.array((1,2,3))
    >>> b = np.array((2,3,4))
    >>> np.column_stack((a,b))
    array([[1, 2],
           [2, 3],
           [3, 4]])

    """
    arrays = []
    for v in tup:
        arr = array(v, copy=False, subok=True)
        if arr.ndim < 2:
            arr = array(arr, copy=False, subok=True, ndmin=2).T
        arrays.append(arr)
    return _nx.concatenate(arrays, 1) 
Example #20
Source File: polynomial.py    From recruit with Apache License 2.0 5 votes vote down vote up
def __setitem__(self, key, val):
        ind = self.order - key
        if key < 0:
            raise ValueError("Does not support negative powers.")
        if key > self.order:
            zr = NX.zeros(key-self.order, self.coeffs.dtype)
            self._coeffs = NX.concatenate((zr, self.coeffs))
            ind = 0
        self._coeffs[ind] = val
        return 
Example #21
Source File: polynomial.py    From pySINDy with MIT License 5 votes vote down vote up
def __setitem__(self, key, val):
        ind = self.order - key
        if key < 0:
            raise ValueError("Does not support negative powers.")
        if key > self.order:
            zr = NX.zeros(key-self.order, self.coeffs.dtype)
            self._coeffs = NX.concatenate((zr, self.coeffs))
            ind = 0
        self._coeffs[ind] = val
        return 
Example #22
Source File: shape_base.py    From pySINDy with MIT License 5 votes vote down vote up
def column_stack(tup):
    """
    Stack 1-D arrays as columns into a 2-D array.

    Take a sequence of 1-D arrays and stack them as columns
    to make a single 2-D array. 2-D arrays are stacked as-is,
    just like with `hstack`.  1-D arrays are turned into 2-D columns
    first.

    Parameters
    ----------
    tup : sequence of 1-D or 2-D arrays.
        Arrays to stack. All of them must have the same first dimension.

    Returns
    -------
    stacked : 2-D array
        The array formed by stacking the given arrays.

    See Also
    --------
    stack, hstack, vstack, concatenate

    Examples
    --------
    >>> a = np.array((1,2,3))
    >>> b = np.array((2,3,4))
    >>> np.column_stack((a,b))
    array([[1, 2],
           [2, 3],
           [3, 4]])

    """
    arrays = []
    for v in tup:
        arr = array(v, copy=False, subok=True)
        if arr.ndim < 2:
            arr = array(arr, copy=False, subok=True, ndmin=2).T
        arrays.append(arr)
    return _nx.concatenate(arrays, 1) 
Example #23
Source File: polynomial.py    From Fluid-Designer with GNU General Public License v3.0 5 votes vote down vote up
def __setitem__(self, key, val):
        ind = self.order - key
        if key < 0:
            raise ValueError("Does not support negative powers.")
        if key > self.order:
            zr = NX.zeros(key-self.order, self.coeffs.dtype)
            self.__dict__['coeffs'] = NX.concatenate((zr, self.coeffs))
            self.__dict__['order'] = key
            ind = 0
        self.__dict__['coeffs'][ind] = val
        return 
Example #24
Source File: shape_base.py    From mxnet-lambda with Apache License 2.0 5 votes vote down vote up
def column_stack(tup):
    """
    Stack 1-D arrays as columns into a 2-D array.

    Take a sequence of 1-D arrays and stack them as columns
    to make a single 2-D array. 2-D arrays are stacked as-is,
    just like with `hstack`.  1-D arrays are turned into 2-D columns
    first.

    Parameters
    ----------
    tup : sequence of 1-D or 2-D arrays.
        Arrays to stack. All of them must have the same first dimension.

    Returns
    -------
    stacked : 2-D array
        The array formed by stacking the given arrays.

    See Also
    --------
    hstack, vstack, concatenate

    Examples
    --------
    >>> a = np.array((1,2,3))
    >>> b = np.array((2,3,4))
    >>> np.column_stack((a,b))
    array([[1, 2],
           [2, 3],
           [3, 4]])

    """
    arrays = []
    for v in tup:
        arr = array(v, copy=False, subok=True)
        if arr.ndim < 2:
            arr = array(arr, copy=False, subok=True, ndmin=2).T
        arrays.append(arr)
    return _nx.concatenate(arrays, 1) 
Example #25
Source File: shape_base.py    From GraphicDesignPatternByPython with MIT License 5 votes vote down vote up
def column_stack(tup):
    """
    Stack 1-D arrays as columns into a 2-D array.

    Take a sequence of 1-D arrays and stack them as columns
    to make a single 2-D array. 2-D arrays are stacked as-is,
    just like with `hstack`.  1-D arrays are turned into 2-D columns
    first.

    Parameters
    ----------
    tup : sequence of 1-D or 2-D arrays.
        Arrays to stack. All of them must have the same first dimension.

    Returns
    -------
    stacked : 2-D array
        The array formed by stacking the given arrays.

    See Also
    --------
    stack, hstack, vstack, concatenate

    Examples
    --------
    >>> a = np.array((1,2,3))
    >>> b = np.array((2,3,4))
    >>> np.column_stack((a,b))
    array([[1, 2],
           [2, 3],
           [3, 4]])

    """
    arrays = []
    for v in tup:
        arr = array(v, copy=False, subok=True)
        if arr.ndim < 2:
            arr = array(arr, copy=False, subok=True, ndmin=2).T
        arrays.append(arr)
    return _nx.concatenate(arrays, 1) 
Example #26
Source File: polynomial.py    From GraphicDesignPatternByPython with MIT License 5 votes vote down vote up
def __setitem__(self, key, val):
        ind = self.order - key
        if key < 0:
            raise ValueError("Does not support negative powers.")
        if key > self.order:
            zr = NX.zeros(key-self.order, self.coeffs.dtype)
            self._coeffs = NX.concatenate((zr, self.coeffs))
            ind = 0
        self._coeffs[ind] = val
        return 
Example #27
Source File: shape_base.py    From elasticintel with GNU General Public License v3.0 5 votes vote down vote up
def column_stack(tup):
    """
    Stack 1-D arrays as columns into a 2-D array.

    Take a sequence of 1-D arrays and stack them as columns
    to make a single 2-D array. 2-D arrays are stacked as-is,
    just like with `hstack`.  1-D arrays are turned into 2-D columns
    first.

    Parameters
    ----------
    tup : sequence of 1-D or 2-D arrays.
        Arrays to stack. All of them must have the same first dimension.

    Returns
    -------
    stacked : 2-D array
        The array formed by stacking the given arrays.

    See Also
    --------
    hstack, vstack, concatenate

    Examples
    --------
    >>> a = np.array((1,2,3))
    >>> b = np.array((2,3,4))
    >>> np.column_stack((a,b))
    array([[1, 2],
           [2, 3],
           [3, 4]])

    """
    arrays = []
    for v in tup:
        arr = array(v, copy=False, subok=True)
        if arr.ndim < 2:
            arr = array(arr, copy=False, subok=True, ndmin=2).T
        arrays.append(arr)
    return _nx.concatenate(arrays, 1) 
Example #28
Source File: shape_base.py    From Mastering-Elasticsearch-7.0 with MIT License 5 votes vote down vote up
def column_stack(tup):
    """
    Stack 1-D arrays as columns into a 2-D array.

    Take a sequence of 1-D arrays and stack them as columns
    to make a single 2-D array. 2-D arrays are stacked as-is,
    just like with `hstack`.  1-D arrays are turned into 2-D columns
    first.

    Parameters
    ----------
    tup : sequence of 1-D or 2-D arrays.
        Arrays to stack. All of them must have the same first dimension.

    Returns
    -------
    stacked : 2-D array
        The array formed by stacking the given arrays.

    See Also
    --------
    stack, hstack, vstack, concatenate

    Examples
    --------
    >>> a = np.array((1,2,3))
    >>> b = np.array((2,3,4))
    >>> np.column_stack((a,b))
    array([[1, 2],
           [2, 3],
           [3, 4]])

    """
    _warn_for_nonsequence(tup)
    arrays = []
    for v in tup:
        arr = array(v, copy=False, subok=True)
        if arr.ndim < 2:
            arr = array(arr, copy=False, subok=True, ndmin=2).T
        arrays.append(arr)
    return _nx.concatenate(arrays, 1) 
Example #29
Source File: polynomial.py    From Mastering-Elasticsearch-7.0 with MIT License 5 votes vote down vote up
def __setitem__(self, key, val):
        ind = self.order - key
        if key < 0:
            raise ValueError("Does not support negative powers.")
        if key > self.order:
            zr = NX.zeros(key-self.order, self.coeffs.dtype)
            self._coeffs = NX.concatenate((zr, self.coeffs))
            ind = 0
        self._coeffs[ind] = val
        return 
Example #30
Source File: polynomial.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 5 votes vote down vote up
def __setitem__(self, key, val):
        ind = self.order - key
        if key < 0:
            raise ValueError("Does not support negative powers.")
        if key > self.order:
            zr = NX.zeros(key-self.order, self.coeffs.dtype)
            self._coeffs = NX.concatenate((zr, self.coeffs))
            ind = 0
        self._coeffs[ind] = val
        return