Python numpy.core.numeric.integer() Examples
The following are 30
code examples of numpy.core.numeric.integer().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy.core.numeric
, or try the search function
.
Example #1
Source File: _iotools.py From ImageFusion with MIT License | 6 votes |
def __init__(self, delimiter=None, comments=asbytes('#'), autostrip=True): self.comments = comments # Delimiter is a character if isinstance(delimiter, unicode): delimiter = delimiter.encode('ascii') if (delimiter is None) or _is_bytes_like(delimiter): delimiter = delimiter or None _handyman = self._delimited_splitter # Delimiter is a list of field widths elif hasattr(delimiter, '__iter__'): _handyman = self._variablewidth_splitter idx = np.cumsum([0] + list(delimiter)) delimiter = [slice(i, j) for (i, j) in zip(idx[:-1], idx[1:])] # Delimiter is a single integer elif int(delimiter): (_handyman, delimiter) = ( self._fixedwidth_splitter, int(delimiter)) else: (_handyman, delimiter) = (self._delimited_splitter, None) self.delimiter = delimiter if autostrip: self._handyman = self.autostrip(_handyman) else: self._handyman = _handyman #
Example #2
Source File: shape_base.py From lambda-packs with MIT License | 6 votes |
def _make_along_axis_idx(arr_shape, indices, axis): # compute dimensions to iterate over if not _nx.issubdtype(indices.dtype, _nx.integer): raise IndexError('`indices` must be an integer array') if len(arr_shape) != indices.ndim: raise ValueError( "`indices` and `arr` must have the same number of dimensions") shape_ones = (1,) * indices.ndim dest_dims = list(range(axis)) + [None] + list(range(axis+1, indices.ndim)) # build a fancy index, consisting of orthogonal aranges, with the # requested index inserted at the right location fancy_index = [] for dim, n in zip(dest_dims, arr_shape): if dim is None: fancy_index.append(indices) else: ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim+1:] fancy_index.append(_nx.arange(n).reshape(ind_shape)) return tuple(fancy_index)
Example #3
Source File: shape_base.py From twitter-stock-recommendation with MIT License | 6 votes |
def _make_along_axis_idx(arr_shape, indices, axis): # compute dimensions to iterate over if not _nx.issubdtype(indices.dtype, _nx.integer): raise IndexError('`indices` must be an integer array') if len(arr_shape) != indices.ndim: raise ValueError( "`indices` and `arr` must have the same number of dimensions") shape_ones = (1,) * indices.ndim dest_dims = list(range(axis)) + [None] + list(range(axis+1, indices.ndim)) # build a fancy index, consisting of orthogonal aranges, with the # requested index inserted at the right location fancy_index = [] for dim, n in zip(dest_dims, arr_shape): if dim is None: fancy_index.append(indices) else: ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim+1:] fancy_index.append(_nx.arange(n).reshape(ind_shape)) return tuple(fancy_index)
Example #4
Source File: _iotools.py From keras-lambda with MIT License | 6 votes |
def __init__(self, delimiter=None, comments=asbytes('#'), autostrip=True): self.comments = comments # Delimiter is a character if isinstance(delimiter, unicode): delimiter = delimiter.encode('ascii') if (delimiter is None) or _is_bytes_like(delimiter): delimiter = delimiter or None _handyman = self._delimited_splitter # Delimiter is a list of field widths elif hasattr(delimiter, '__iter__'): _handyman = self._variablewidth_splitter idx = np.cumsum([0] + list(delimiter)) delimiter = [slice(i, j) for (i, j) in zip(idx[:-1], idx[1:])] # Delimiter is a single integer elif int(delimiter): (_handyman, delimiter) = ( self._fixedwidth_splitter, int(delimiter)) else: (_handyman, delimiter) = (self._delimited_splitter, None) self.delimiter = delimiter if autostrip: self._handyman = self.autostrip(_handyman) else: self._handyman = _handyman #
Example #5
Source File: shape_base.py From recruit with Apache License 2.0 | 6 votes |
def _make_along_axis_idx(arr_shape, indices, axis): # compute dimensions to iterate over if not _nx.issubdtype(indices.dtype, _nx.integer): raise IndexError('`indices` must be an integer array') if len(arr_shape) != indices.ndim: raise ValueError( "`indices` and `arr` must have the same number of dimensions") shape_ones = (1,) * indices.ndim dest_dims = list(range(axis)) + [None] + list(range(axis+1, indices.ndim)) # build a fancy index, consisting of orthogonal aranges, with the # requested index inserted at the right location fancy_index = [] for dim, n in zip(dest_dims, arr_shape): if dim is None: fancy_index.append(indices) else: ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim+1:] fancy_index.append(_nx.arange(n).reshape(ind_shape)) return tuple(fancy_index)
Example #6
Source File: _iotools.py From auto-alt-text-lambda-api with MIT License | 6 votes |
def __init__(self, delimiter=None, comments=asbytes('#'), autostrip=True): self.comments = comments # Delimiter is a character if isinstance(delimiter, unicode): delimiter = delimiter.encode('ascii') if (delimiter is None) or _is_bytes_like(delimiter): delimiter = delimiter or None _handyman = self._delimited_splitter # Delimiter is a list of field widths elif hasattr(delimiter, '__iter__'): _handyman = self._variablewidth_splitter idx = np.cumsum([0] + list(delimiter)) delimiter = [slice(i, j) for (i, j) in zip(idx[:-1], idx[1:])] # Delimiter is a single integer elif int(delimiter): (_handyman, delimiter) = ( self._fixedwidth_splitter, int(delimiter)) else: (_handyman, delimiter) = (self._delimited_splitter, None) self.delimiter = delimiter if autostrip: self._handyman = self.autostrip(_handyman) else: self._handyman = _handyman #
Example #7
Source File: shape_base.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 6 votes |
def _make_along_axis_idx(arr_shape, indices, axis): # compute dimensions to iterate over if not _nx.issubdtype(indices.dtype, _nx.integer): raise IndexError('`indices` must be an integer array') if len(arr_shape) != indices.ndim: raise ValueError( "`indices` and `arr` must have the same number of dimensions") shape_ones = (1,) * indices.ndim dest_dims = list(range(axis)) + [None] + list(range(axis+1, indices.ndim)) # build a fancy index, consisting of orthogonal aranges, with the # requested index inserted at the right location fancy_index = [] for dim, n in zip(dest_dims, arr_shape): if dim is None: fancy_index.append(indices) else: ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim+1:] fancy_index.append(_nx.arange(n).reshape(ind_shape)) return tuple(fancy_index)
Example #8
Source File: _iotools.py From Computable with MIT License | 6 votes |
def __init__(self, delimiter=None, comments=asbytes('#'), autostrip=True): self.comments = comments # Delimiter is a character if isinstance(delimiter, unicode): delimiter = delimiter.encode('ascii') if (delimiter is None) or _is_bytes_like(delimiter): delimiter = delimiter or None _handyman = self._delimited_splitter # Delimiter is a list of field widths elif hasattr(delimiter, '__iter__'): _handyman = self._variablewidth_splitter idx = np.cumsum([0] + list(delimiter)) delimiter = [slice(i, j) for (i, j) in zip(idx[:-1], idx[1:])] # Delimiter is a single integer elif int(delimiter): (_handyman, delimiter) = (self._fixedwidth_splitter, int(delimiter)) else: (_handyman, delimiter) = (self._delimited_splitter, None) self.delimiter = delimiter if autostrip: self._handyman = self.autostrip(_handyman) else: self._handyman = _handyman #
Example #9
Source File: shape_base.py From Carnets with BSD 3-Clause "New" or "Revised" License | 6 votes |
def _make_along_axis_idx(arr_shape, indices, axis): # compute dimensions to iterate over if not _nx.issubdtype(indices.dtype, _nx.integer): raise IndexError('`indices` must be an integer array') if len(arr_shape) != indices.ndim: raise ValueError( "`indices` and `arr` must have the same number of dimensions") shape_ones = (1,) * indices.ndim dest_dims = list(range(axis)) + [None] + list(range(axis+1, indices.ndim)) # build a fancy index, consisting of orthogonal aranges, with the # requested index inserted at the right location fancy_index = [] for dim, n in zip(dest_dims, arr_shape): if dim is None: fancy_index.append(indices) else: ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim+1:] fancy_index.append(_nx.arange(n).reshape(ind_shape)) return tuple(fancy_index)
Example #10
Source File: shape_base.py From coffeegrindsize with MIT License | 6 votes |
def _make_along_axis_idx(arr_shape, indices, axis): # compute dimensions to iterate over if not _nx.issubdtype(indices.dtype, _nx.integer): raise IndexError('`indices` must be an integer array') if len(arr_shape) != indices.ndim: raise ValueError( "`indices` and `arr` must have the same number of dimensions") shape_ones = (1,) * indices.ndim dest_dims = list(range(axis)) + [None] + list(range(axis+1, indices.ndim)) # build a fancy index, consisting of orthogonal aranges, with the # requested index inserted at the right location fancy_index = [] for dim, n in zip(dest_dims, arr_shape): if dim is None: fancy_index.append(indices) else: ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim+1:] fancy_index.append(_nx.arange(n).reshape(ind_shape)) return tuple(fancy_index)
Example #11
Source File: shape_base.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 6 votes |
def _make_along_axis_idx(arr_shape, indices, axis): # compute dimensions to iterate over if not _nx.issubdtype(indices.dtype, _nx.integer): raise IndexError('`indices` must be an integer array') if len(arr_shape) != indices.ndim: raise ValueError( "`indices` and `arr` must have the same number of dimensions") shape_ones = (1,) * indices.ndim dest_dims = list(range(axis)) + [None] + list(range(axis+1, indices.ndim)) # build a fancy index, consisting of orthogonal aranges, with the # requested index inserted at the right location fancy_index = [] for dim, n in zip(dest_dims, arr_shape): if dim is None: fancy_index.append(indices) else: ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim+1:] fancy_index.append(_nx.arange(n).reshape(ind_shape)) return tuple(fancy_index)
Example #12
Source File: _iotools.py From Fluid-Designer with GNU General Public License v3.0 | 6 votes |
def __init__(self, delimiter=None, comments=asbytes('#'), autostrip=True): self.comments = comments # Delimiter is a character if isinstance(delimiter, unicode): delimiter = delimiter.encode('ascii') if (delimiter is None) or _is_bytes_like(delimiter): delimiter = delimiter or None _handyman = self._delimited_splitter # Delimiter is a list of field widths elif hasattr(delimiter, '__iter__'): _handyman = self._variablewidth_splitter idx = np.cumsum([0] + list(delimiter)) delimiter = [slice(i, j) for (i, j) in zip(idx[:-1], idx[1:])] # Delimiter is a single integer elif int(delimiter): (_handyman, delimiter) = ( self._fixedwidth_splitter, int(delimiter)) else: (_handyman, delimiter) = (self._delimited_splitter, None) self.delimiter = delimiter if autostrip: self._handyman = self.autostrip(_handyman) else: self._handyman = _handyman #
Example #13
Source File: _iotools.py From elasticintel with GNU General Public License v3.0 | 6 votes |
def __init__(self, delimiter=None, comments=b'#', autostrip=True): self.comments = comments # Delimiter is a character if isinstance(delimiter, unicode): delimiter = delimiter.encode('ascii') if (delimiter is None) or _is_bytes_like(delimiter): delimiter = delimiter or None _handyman = self._delimited_splitter # Delimiter is a list of field widths elif hasattr(delimiter, '__iter__'): _handyman = self._variablewidth_splitter idx = np.cumsum([0] + list(delimiter)) delimiter = [slice(i, j) for (i, j) in zip(idx[:-1], idx[1:])] # Delimiter is a single integer elif int(delimiter): (_handyman, delimiter) = ( self._fixedwidth_splitter, int(delimiter)) else: (_handyman, delimiter) = (self._delimited_splitter, None) self.delimiter = delimiter if autostrip: self._handyman = self.autostrip(_handyman) else: self._handyman = _handyman #
Example #14
Source File: shape_base.py From pySINDy with MIT License | 6 votes |
def _make_along_axis_idx(arr_shape, indices, axis): # compute dimensions to iterate over if not _nx.issubdtype(indices.dtype, _nx.integer): raise IndexError('`indices` must be an integer array') if len(arr_shape) != indices.ndim: raise ValueError( "`indices` and `arr` must have the same number of dimensions") shape_ones = (1,) * indices.ndim dest_dims = list(range(axis)) + [None] + list(range(axis+1, indices.ndim)) # build a fancy index, consisting of orthogonal aranges, with the # requested index inserted at the right location fancy_index = [] for dim, n in zip(dest_dims, arr_shape): if dim is None: fancy_index.append(indices) else: ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim+1:] fancy_index.append(_nx.arange(n).reshape(ind_shape)) return tuple(fancy_index)
Example #15
Source File: _iotools.py From mxnet-lambda with Apache License 2.0 | 6 votes |
def __init__(self, delimiter=None, comments=b'#', autostrip=True): self.comments = comments # Delimiter is a character if isinstance(delimiter, unicode): delimiter = delimiter.encode('ascii') if (delimiter is None) or _is_bytes_like(delimiter): delimiter = delimiter or None _handyman = self._delimited_splitter # Delimiter is a list of field widths elif hasattr(delimiter, '__iter__'): _handyman = self._variablewidth_splitter idx = np.cumsum([0] + list(delimiter)) delimiter = [slice(i, j) for (i, j) in zip(idx[:-1], idx[1:])] # Delimiter is a single integer elif int(delimiter): (_handyman, delimiter) = ( self._fixedwidth_splitter, int(delimiter)) else: (_handyman, delimiter) = (self._delimited_splitter, None) self.delimiter = delimiter if autostrip: self._handyman = self.autostrip(_handyman) else: self._handyman = _handyman #
Example #16
Source File: _iotools.py From Splunking-Crime with GNU Affero General Public License v3.0 | 6 votes |
def __init__(self, delimiter=None, comments=b'#', autostrip=True): self.comments = comments # Delimiter is a character if isinstance(delimiter, unicode): delimiter = delimiter.encode('ascii') if (delimiter is None) or _is_bytes_like(delimiter): delimiter = delimiter or None _handyman = self._delimited_splitter # Delimiter is a list of field widths elif hasattr(delimiter, '__iter__'): _handyman = self._variablewidth_splitter idx = np.cumsum([0] + list(delimiter)) delimiter = [slice(i, j) for (i, j) in zip(idx[:-1], idx[1:])] # Delimiter is a single integer elif int(delimiter): (_handyman, delimiter) = ( self._fixedwidth_splitter, int(delimiter)) else: (_handyman, delimiter) = (self._delimited_splitter, None) self.delimiter = delimiter if autostrip: self._handyman = self.autostrip(_handyman) else: self._handyman = _handyman #
Example #17
Source File: shape_base.py From Mastering-Elasticsearch-7.0 with MIT License | 6 votes |
def _make_along_axis_idx(arr_shape, indices, axis): # compute dimensions to iterate over if not _nx.issubdtype(indices.dtype, _nx.integer): raise IndexError('`indices` must be an integer array') if len(arr_shape) != indices.ndim: raise ValueError( "`indices` and `arr` must have the same number of dimensions") shape_ones = (1,) * indices.ndim dest_dims = list(range(axis)) + [None] + list(range(axis+1, indices.ndim)) # build a fancy index, consisting of orthogonal aranges, with the # requested index inserted at the right location fancy_index = [] for dim, n in zip(dest_dims, arr_shape): if dim is None: fancy_index.append(indices) else: ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim+1:] fancy_index.append(_nx.arange(n).reshape(ind_shape)) return tuple(fancy_index)
Example #18
Source File: shape_base.py From GraphicDesignPatternByPython with MIT License | 6 votes |
def _make_along_axis_idx(arr_shape, indices, axis): # compute dimensions to iterate over if not _nx.issubdtype(indices.dtype, _nx.integer): raise IndexError('`indices` must be an integer array') if len(arr_shape) != indices.ndim: raise ValueError( "`indices` and `arr` must have the same number of dimensions") shape_ones = (1,) * indices.ndim dest_dims = list(range(axis)) + [None] + list(range(axis+1, indices.ndim)) # build a fancy index, consisting of orthogonal aranges, with the # requested index inserted at the right location fancy_index = [] for dim, n in zip(dest_dims, arr_shape): if dim is None: fancy_index.append(indices) else: ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim+1:] fancy_index.append(_nx.arange(n).reshape(ind_shape)) return tuple(fancy_index)
Example #19
Source File: _iotools.py From recruit with Apache License 2.0 | 5 votes |
def __init__(self, delimiter=None, comments='#', autostrip=True, encoding=None): delimiter = _decode_line(delimiter) comments = _decode_line(comments) self.comments = comments # Delimiter is a character if (delimiter is None) or isinstance(delimiter, basestring): delimiter = delimiter or None _handyman = self._delimited_splitter # Delimiter is a list of field widths elif hasattr(delimiter, '__iter__'): _handyman = self._variablewidth_splitter idx = np.cumsum([0] + list(delimiter)) delimiter = [slice(i, j) for (i, j) in zip(idx[:-1], idx[1:])] # Delimiter is a single integer elif int(delimiter): (_handyman, delimiter) = ( self._fixedwidth_splitter, int(delimiter)) else: (_handyman, delimiter) = (self._delimited_splitter, None) self.delimiter = delimiter if autostrip: self._handyman = self.autostrip(_handyman) else: self._handyman = _handyman self.encoding = encoding #
Example #20
Source File: _iotools.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def __init__(self, delimiter=None, comments='#', autostrip=True, encoding=None): delimiter = _decode_line(delimiter) comments = _decode_line(comments) self.comments = comments # Delimiter is a character if (delimiter is None) or isinstance(delimiter, basestring): delimiter = delimiter or None _handyman = self._delimited_splitter # Delimiter is a list of field widths elif hasattr(delimiter, '__iter__'): _handyman = self._variablewidth_splitter idx = np.cumsum([0] + list(delimiter)) delimiter = [slice(i, j) for (i, j) in zip(idx[:-1], idx[1:])] # Delimiter is a single integer elif int(delimiter): (_handyman, delimiter) = ( self._fixedwidth_splitter, int(delimiter)) else: (_handyman, delimiter) = (self._delimited_splitter, None) self.delimiter = delimiter if autostrip: self._handyman = self.autostrip(_handyman) else: self._handyman = _handyman self.encoding = encoding #
Example #21
Source File: _iotools.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def __init__(self, delimiter=None, comments='#', autostrip=True, encoding=None): delimiter = _decode_line(delimiter) comments = _decode_line(comments) self.comments = comments # Delimiter is a character if (delimiter is None) or isinstance(delimiter, basestring): delimiter = delimiter or None _handyman = self._delimited_splitter # Delimiter is a list of field widths elif hasattr(delimiter, '__iter__'): _handyman = self._variablewidth_splitter idx = np.cumsum([0] + list(delimiter)) delimiter = [slice(i, j) for (i, j) in zip(idx[:-1], idx[1:])] # Delimiter is a single integer elif int(delimiter): (_handyman, delimiter) = ( self._fixedwidth_splitter, int(delimiter)) else: (_handyman, delimiter) = (self._delimited_splitter, None) self.delimiter = delimiter if autostrip: self._handyman = self.autostrip(_handyman) else: self._handyman = _handyman self.encoding = encoding #
Example #22
Source File: _iotools.py From twitter-stock-recommendation with MIT License | 5 votes |
def __init__(self, delimiter=None, comments='#', autostrip=True, encoding=None): delimiter = _decode_line(delimiter) comments = _decode_line(comments) self.comments = comments # Delimiter is a character if (delimiter is None) or isinstance(delimiter, basestring): delimiter = delimiter or None _handyman = self._delimited_splitter # Delimiter is a list of field widths elif hasattr(delimiter, '__iter__'): _handyman = self._variablewidth_splitter idx = np.cumsum([0] + list(delimiter)) delimiter = [slice(i, j) for (i, j) in zip(idx[:-1], idx[1:])] # Delimiter is a single integer elif int(delimiter): (_handyman, delimiter) = ( self._fixedwidth_splitter, int(delimiter)) else: (_handyman, delimiter) = (self._delimited_splitter, None) self.delimiter = delimiter if autostrip: self._handyman = self.autostrip(_handyman) else: self._handyman = _handyman self.encoding = encoding #
Example #23
Source File: _iotools.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def __init__(self, delimiter=None, comments='#', autostrip=True, encoding=None): delimiter = _decode_line(delimiter) comments = _decode_line(comments) self.comments = comments # Delimiter is a character if (delimiter is None) or isinstance(delimiter, basestring): delimiter = delimiter or None _handyman = self._delimited_splitter # Delimiter is a list of field widths elif hasattr(delimiter, '__iter__'): _handyman = self._variablewidth_splitter idx = np.cumsum([0] + list(delimiter)) delimiter = [slice(i, j) for (i, j) in zip(idx[:-1], idx[1:])] # Delimiter is a single integer elif int(delimiter): (_handyman, delimiter) = ( self._fixedwidth_splitter, int(delimiter)) else: (_handyman, delimiter) = (self._delimited_splitter, None) self.delimiter = delimiter if autostrip: self._handyman = self.autostrip(_handyman) else: self._handyman = _handyman self.encoding = encoding #
Example #24
Source File: _iotools.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def __init__(self, delimiter=None, comments='#', autostrip=True, encoding=None): delimiter = _decode_line(delimiter) comments = _decode_line(comments) self.comments = comments # Delimiter is a character if (delimiter is None) or isinstance(delimiter, basestring): delimiter = delimiter or None _handyman = self._delimited_splitter # Delimiter is a list of field widths elif hasattr(delimiter, '__iter__'): _handyman = self._variablewidth_splitter idx = np.cumsum([0] + list(delimiter)) delimiter = [slice(i, j) for (i, j) in zip(idx[:-1], idx[1:])] # Delimiter is a single integer elif int(delimiter): (_handyman, delimiter) = ( self._fixedwidth_splitter, int(delimiter)) else: (_handyman, delimiter) = (self._delimited_splitter, None) self.delimiter = delimiter if autostrip: self._handyman = self.autostrip(_handyman) else: self._handyman = _handyman self.encoding = encoding #
Example #25
Source File: _iotools.py From coffeegrindsize with MIT License | 5 votes |
def __init__(self, delimiter=None, comments='#', autostrip=True, encoding=None): delimiter = _decode_line(delimiter) comments = _decode_line(comments) self.comments = comments # Delimiter is a character if (delimiter is None) or isinstance(delimiter, basestring): delimiter = delimiter or None _handyman = self._delimited_splitter # Delimiter is a list of field widths elif hasattr(delimiter, '__iter__'): _handyman = self._variablewidth_splitter idx = np.cumsum([0] + list(delimiter)) delimiter = [slice(i, j) for (i, j) in zip(idx[:-1], idx[1:])] # Delimiter is a single integer elif int(delimiter): (_handyman, delimiter) = ( self._fixedwidth_splitter, int(delimiter)) else: (_handyman, delimiter) = (self._delimited_splitter, None) self.delimiter = delimiter if autostrip: self._handyman = self.autostrip(_handyman) else: self._handyman = _handyman self.encoding = encoding #
Example #26
Source File: _iotools.py From pySINDy with MIT License | 5 votes |
def __init__(self, delimiter=None, comments='#', autostrip=True, encoding=None): delimiter = _decode_line(delimiter) comments = _decode_line(comments) self.comments = comments # Delimiter is a character if (delimiter is None) or isinstance(delimiter, basestring): delimiter = delimiter or None _handyman = self._delimited_splitter # Delimiter is a list of field widths elif hasattr(delimiter, '__iter__'): _handyman = self._variablewidth_splitter idx = np.cumsum([0] + list(delimiter)) delimiter = [slice(i, j) for (i, j) in zip(idx[:-1], idx[1:])] # Delimiter is a single integer elif int(delimiter): (_handyman, delimiter) = ( self._fixedwidth_splitter, int(delimiter)) else: (_handyman, delimiter) = (self._delimited_splitter, None) self.delimiter = delimiter if autostrip: self._handyman = self.autostrip(_handyman) else: self._handyman = _handyman self.encoding = encoding #
Example #27
Source File: _iotools.py From lambda-packs with MIT License | 5 votes |
def __init__(self, delimiter=None, comments='#', autostrip=True, encoding=None): delimiter = _decode_line(delimiter) comments = _decode_line(comments) self.comments = comments # Delimiter is a character if (delimiter is None) or isinstance(delimiter, basestring): delimiter = delimiter or None _handyman = self._delimited_splitter # Delimiter is a list of field widths elif hasattr(delimiter, '__iter__'): _handyman = self._variablewidth_splitter idx = np.cumsum([0] + list(delimiter)) delimiter = [slice(i, j) for (i, j) in zip(idx[:-1], idx[1:])] # Delimiter is a single integer elif int(delimiter): (_handyman, delimiter) = ( self._fixedwidth_splitter, int(delimiter)) else: (_handyman, delimiter) = (self._delimited_splitter, None) self.delimiter = delimiter if autostrip: self._handyman = self.autostrip(_handyman) else: self._handyman = _handyman self.encoding = encoding #
Example #28
Source File: _iotools.py From vnpy_crypto with MIT License | 5 votes |
def __init__(self, delimiter=None, comments='#', autostrip=True, encoding=None): delimiter = _decode_line(delimiter) comments = _decode_line(comments) self.comments = comments # Delimiter is a character if (delimiter is None) or isinstance(delimiter, basestring): delimiter = delimiter or None _handyman = self._delimited_splitter # Delimiter is a list of field widths elif hasattr(delimiter, '__iter__'): _handyman = self._variablewidth_splitter idx = np.cumsum([0] + list(delimiter)) delimiter = [slice(i, j) for (i, j) in zip(idx[:-1], idx[1:])] # Delimiter is a single integer elif int(delimiter): (_handyman, delimiter) = ( self._fixedwidth_splitter, int(delimiter)) else: (_handyman, delimiter) = (self._delimited_splitter, None) self.delimiter = delimiter if autostrip: self._handyman = self.autostrip(_handyman) else: self._handyman = _handyman self.encoding = encoding #
Example #29
Source File: _iotools.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def __init__(self, delimiter=None, comments='#', autostrip=True, encoding=None): delimiter = _decode_line(delimiter) comments = _decode_line(comments) self.comments = comments # Delimiter is a character if (delimiter is None) or isinstance(delimiter, basestring): delimiter = delimiter or None _handyman = self._delimited_splitter # Delimiter is a list of field widths elif hasattr(delimiter, '__iter__'): _handyman = self._variablewidth_splitter idx = np.cumsum([0] + list(delimiter)) delimiter = [slice(i, j) for (i, j) in zip(idx[:-1], idx[1:])] # Delimiter is a single integer elif int(delimiter): (_handyman, delimiter) = ( self._fixedwidth_splitter, int(delimiter)) else: (_handyman, delimiter) = (self._delimited_splitter, None) self.delimiter = delimiter if autostrip: self._handyman = self.autostrip(_handyman) else: self._handyman = _handyman self.encoding = encoding #
Example #30
Source File: type_check.py From elasticintel with GNU General Public License v3.0 | 4 votes |
def typename(char): """ Return a description for the given data type code. Parameters ---------- char : str Data type code. Returns ------- out : str Description of the input data type code. See Also -------- dtype, typecodes Examples -------- >>> typechars = ['S1', '?', 'B', 'D', 'G', 'F', 'I', 'H', 'L', 'O', 'Q', ... 'S', 'U', 'V', 'b', 'd', 'g', 'f', 'i', 'h', 'l', 'q'] >>> for typechar in typechars: ... print(typechar, ' : ', np.typename(typechar)) ... S1 : character ? : bool B : unsigned char D : complex double precision G : complex long double precision F : complex single precision I : unsigned integer H : unsigned short L : unsigned long integer O : object Q : unsigned long long integer S : string U : unicode V : void b : signed char d : double precision g : long precision f : single precision i : integer h : short l : long integer q : long long integer """ return _namefromtype[char] #----------------------------------------------------------------------------- #determine the "minimum common type" for a group of arrays.