Python numpy.core.numeric.inexact() Examples
The following are 30
code examples of numpy.core.numeric.inexact().
You can vote up the ones you like or vote down the ones you don't like,
and go to the original project or source file by following the links above each example.
You may also want to check out all available functions/classes of the module
numpy.core.numeric
, or try the search function
.
Example #1
Source File: type_check.py From afnumpy with BSD 2-Clause "Simplified" License | 5 votes |
def asfarray(a, dtype=_nx.float_): dtype = _nx.obj2sctype(dtype) if not issubclass(dtype, _nx.inexact): dtype = _nx.float_ return afnumpy.asarray(a, dtype=dtype)
Example #2
Source File: type_check.py From Splunking-Crime with GNU Affero General Public License v3.0 | 5 votes |
def asfarray(a, dtype=_nx.float_): """ Return an array converted to a float type. Parameters ---------- a : array_like The input array. dtype : str or dtype object, optional Float type code to coerce input array `a`. If `dtype` is one of the 'int' dtypes, it is replaced with float64. Returns ------- out : ndarray The input `a` as a float ndarray. Examples -------- >>> np.asfarray([2, 3]) array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='float') array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='int8') array([ 2., 3.]) """ dtype = _nx.obj2sctype(dtype) if not issubclass(dtype, _nx.inexact): dtype = _nx.float_ return asarray(a, dtype=dtype)
Example #3
Source File: type_check.py From elasticintel with GNU General Public License v3.0 | 5 votes |
def asfarray(a, dtype=_nx.float_): """ Return an array converted to a float type. Parameters ---------- a : array_like The input array. dtype : str or dtype object, optional Float type code to coerce input array `a`. If `dtype` is one of the 'int' dtypes, it is replaced with float64. Returns ------- out : ndarray The input `a` as a float ndarray. Examples -------- >>> np.asfarray([2, 3]) array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='float') array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='int8') array([ 2., 3.]) """ dtype = _nx.obj2sctype(dtype) if not issubclass(dtype, _nx.inexact): dtype = _nx.float_ return asarray(a, dtype=dtype)
Example #4
Source File: type_check.py From ImageFusion with MIT License | 5 votes |
def asfarray(a, dtype=_nx.float_): """ Return an array converted to a float type. Parameters ---------- a : array_like The input array. dtype : str or dtype object, optional Float type code to coerce input array `a`. If `dtype` is one of the 'int' dtypes, it is replaced with float64. Returns ------- out : ndarray The input `a` as a float ndarray. Examples -------- >>> np.asfarray([2, 3]) array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='float') array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='int8') array([ 2., 3.]) """ dtype = _nx.obj2sctype(dtype) if not issubclass(dtype, _nx.inexact): dtype = _nx.float_ return asarray(a, dtype=dtype)
Example #5
Source File: type_check.py From mxnet-lambda with Apache License 2.0 | 5 votes |
def asfarray(a, dtype=_nx.float_): """ Return an array converted to a float type. Parameters ---------- a : array_like The input array. dtype : str or dtype object, optional Float type code to coerce input array `a`. If `dtype` is one of the 'int' dtypes, it is replaced with float64. Returns ------- out : ndarray The input `a` as a float ndarray. Examples -------- >>> np.asfarray([2, 3]) array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='float') array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='int8') array([ 2., 3.]) """ dtype = _nx.obj2sctype(dtype) if not issubclass(dtype, _nx.inexact): dtype = _nx.float_ return asarray(a, dtype=dtype)
Example #6
Source File: type_check.py From coffeegrindsize with MIT License | 5 votes |
def asfarray(a, dtype=_nx.float_): """ Return an array converted to a float type. Parameters ---------- a : array_like The input array. dtype : str or dtype object, optional Float type code to coerce input array `a`. If `dtype` is one of the 'int' dtypes, it is replaced with float64. Returns ------- out : ndarray The input `a` as a float ndarray. Examples -------- >>> np.asfarray([2, 3]) array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='float') array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='int8') array([ 2., 3.]) """ if not _nx.issubdtype(dtype, _nx.inexact): dtype = _nx.float_ return asarray(a, dtype=dtype)
Example #7
Source File: type_check.py From pySINDy with MIT License | 5 votes |
def asfarray(a, dtype=_nx.float_): """ Return an array converted to a float type. Parameters ---------- a : array_like The input array. dtype : str or dtype object, optional Float type code to coerce input array `a`. If `dtype` is one of the 'int' dtypes, it is replaced with float64. Returns ------- out : ndarray The input `a` as a float ndarray. Examples -------- >>> np.asfarray([2, 3]) array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='float') array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='int8') array([ 2., 3.]) """ if not _nx.issubdtype(dtype, _nx.inexact): dtype = _nx.float_ return asarray(a, dtype=dtype)
Example #8
Source File: type_check.py From recruit with Apache License 2.0 | 5 votes |
def asfarray(a, dtype=_nx.float_): """ Return an array converted to a float type. Parameters ---------- a : array_like The input array. dtype : str or dtype object, optional Float type code to coerce input array `a`. If `dtype` is one of the 'int' dtypes, it is replaced with float64. Returns ------- out : ndarray The input `a` as a float ndarray. Examples -------- >>> np.asfarray([2, 3]) array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='float') array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='int8') array([ 2., 3.]) """ if not _nx.issubdtype(dtype, _nx.inexact): dtype = _nx.float_ return asarray(a, dtype=dtype)
Example #9
Source File: type_check.py From Fluid-Designer with GNU General Public License v3.0 | 5 votes |
def asfarray(a, dtype=_nx.float_): """ Return an array converted to a float type. Parameters ---------- a : array_like The input array. dtype : str or dtype object, optional Float type code to coerce input array `a`. If `dtype` is one of the 'int' dtypes, it is replaced with float64. Returns ------- out : ndarray The input `a` as a float ndarray. Examples -------- >>> np.asfarray([2, 3]) array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='float') array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='int8') array([ 2., 3.]) """ dtype = _nx.obj2sctype(dtype) if not issubclass(dtype, _nx.inexact): dtype = _nx.float_ return asarray(a, dtype=dtype)
Example #10
Source File: type_check.py From predictive-maintenance-using-machine-learning with Apache License 2.0 | 5 votes |
def asfarray(a, dtype=_nx.float_): """ Return an array converted to a float type. Parameters ---------- a : array_like The input array. dtype : str or dtype object, optional Float type code to coerce input array `a`. If `dtype` is one of the 'int' dtypes, it is replaced with float64. Returns ------- out : ndarray The input `a` as a float ndarray. Examples -------- >>> np.asfarray([2, 3]) array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='float') array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='int8') array([ 2., 3.]) """ if not _nx.issubdtype(dtype, _nx.inexact): dtype = _nx.float_ return asarray(a, dtype=dtype)
Example #11
Source File: type_check.py From Carnets with BSD 3-Clause "New" or "Revised" License | 5 votes |
def asfarray(a, dtype=_nx.float_): """ Return an array converted to a float type. Parameters ---------- a : array_like The input array. dtype : str or dtype object, optional Float type code to coerce input array `a`. If `dtype` is one of the 'int' dtypes, it is replaced with float64. Returns ------- out : ndarray The input `a` as a float ndarray. Examples -------- >>> np.asfarray([2, 3]) array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='float') array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='int8') array([ 2., 3.]) """ if not _nx.issubdtype(dtype, _nx.inexact): dtype = _nx.float_ return asarray(a, dtype=dtype)
Example #12
Source File: type_check.py From GraphicDesignPatternByPython with MIT License | 5 votes |
def asfarray(a, dtype=_nx.float_): """ Return an array converted to a float type. Parameters ---------- a : array_like The input array. dtype : str or dtype object, optional Float type code to coerce input array `a`. If `dtype` is one of the 'int' dtypes, it is replaced with float64. Returns ------- out : ndarray The input `a` as a float ndarray. Examples -------- >>> np.asfarray([2, 3]) array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='float') array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='int8') array([ 2., 3.]) """ if not _nx.issubdtype(dtype, _nx.inexact): dtype = _nx.float_ return asarray(a, dtype=dtype)
Example #13
Source File: type_check.py From Mastering-Elasticsearch-7.0 with MIT License | 5 votes |
def asfarray(a, dtype=_nx.float_): """ Return an array converted to a float type. Parameters ---------- a : array_like The input array. dtype : str or dtype object, optional Float type code to coerce input array `a`. If `dtype` is one of the 'int' dtypes, it is replaced with float64. Returns ------- out : ndarray The input `a` as a float ndarray. Examples -------- >>> np.asfarray([2, 3]) array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='float') array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='int8') array([ 2., 3.]) """ if not _nx.issubdtype(dtype, _nx.inexact): dtype = _nx.float_ return asarray(a, dtype=dtype)
Example #14
Source File: type_check.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 5 votes |
def asfarray(a, dtype=_nx.float_): """ Return an array converted to a float type. Parameters ---------- a : array_like The input array. dtype : str or dtype object, optional Float type code to coerce input array `a`. If `dtype` is one of the 'int' dtypes, it is replaced with float64. Returns ------- out : ndarray The input `a` as a float ndarray. Examples -------- >>> np.asfarray([2, 3]) array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='float') array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='int8') array([ 2., 3.]) """ if not _nx.issubdtype(dtype, _nx.inexact): dtype = _nx.float_ return asarray(a, dtype=dtype)
Example #15
Source File: type_check.py From Computable with MIT License | 5 votes |
def asfarray(a, dtype=_nx.float_): """ Return an array converted to a float type. Parameters ---------- a : array_like The input array. dtype : str or dtype object, optional Float type code to coerce input array `a`. If `dtype` is one of the 'int' dtypes, it is replaced with float64. Returns ------- out : ndarray The input `a` as a float ndarray. Examples -------- >>> np.asfarray([2, 3]) array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='float') array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='int8') array([ 2., 3.]) """ dtype = _nx.obj2sctype(dtype) if not issubclass(dtype, _nx.inexact): dtype = _nx.float_ return asarray(a, dtype=dtype)
Example #16
Source File: type_check.py From vnpy_crypto with MIT License | 5 votes |
def asfarray(a, dtype=_nx.float_): """ Return an array converted to a float type. Parameters ---------- a : array_like The input array. dtype : str or dtype object, optional Float type code to coerce input array `a`. If `dtype` is one of the 'int' dtypes, it is replaced with float64. Returns ------- out : ndarray The input `a` as a float ndarray. Examples -------- >>> np.asfarray([2, 3]) array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='float') array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='int8') array([ 2., 3.]) """ if not _nx.issubdtype(dtype, _nx.inexact): dtype = _nx.float_ return asarray(a, dtype=dtype)
Example #17
Source File: type_check.py From twitter-stock-recommendation with MIT License | 5 votes |
def asfarray(a, dtype=_nx.float_): """ Return an array converted to a float type. Parameters ---------- a : array_like The input array. dtype : str or dtype object, optional Float type code to coerce input array `a`. If `dtype` is one of the 'int' dtypes, it is replaced with float64. Returns ------- out : ndarray The input `a` as a float ndarray. Examples -------- >>> np.asfarray([2, 3]) array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='float') array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='int8') array([ 2., 3.]) """ if not _nx.issubdtype(dtype, _nx.inexact): dtype = _nx.float_ return asarray(a, dtype=dtype)
Example #18
Source File: type_check.py From auto-alt-text-lambda-api with MIT License | 5 votes |
def asfarray(a, dtype=_nx.float_): """ Return an array converted to a float type. Parameters ---------- a : array_like The input array. dtype : str or dtype object, optional Float type code to coerce input array `a`. If `dtype` is one of the 'int' dtypes, it is replaced with float64. Returns ------- out : ndarray The input `a` as a float ndarray. Examples -------- >>> np.asfarray([2, 3]) array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='float') array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='int8') array([ 2., 3.]) """ dtype = _nx.obj2sctype(dtype) if not issubclass(dtype, _nx.inexact): dtype = _nx.float_ return asarray(a, dtype=dtype)
Example #19
Source File: type_check.py From lambda-packs with MIT License | 5 votes |
def asfarray(a, dtype=_nx.float_): """ Return an array converted to a float type. Parameters ---------- a : array_like The input array. dtype : str or dtype object, optional Float type code to coerce input array `a`. If `dtype` is one of the 'int' dtypes, it is replaced with float64. Returns ------- out : ndarray The input `a` as a float ndarray. Examples -------- >>> np.asfarray([2, 3]) array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='float') array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='int8') array([ 2., 3.]) """ dtype = _nx.obj2sctype(dtype) if not issubclass(dtype, _nx.inexact): dtype = _nx.float_ return asarray(a, dtype=dtype)
Example #20
Source File: type_check.py From keras-lambda with MIT License | 5 votes |
def asfarray(a, dtype=_nx.float_): """ Return an array converted to a float type. Parameters ---------- a : array_like The input array. dtype : str or dtype object, optional Float type code to coerce input array `a`. If `dtype` is one of the 'int' dtypes, it is replaced with float64. Returns ------- out : ndarray The input `a` as a float ndarray. Examples -------- >>> np.asfarray([2, 3]) array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='float') array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='int8') array([ 2., 3.]) """ dtype = _nx.obj2sctype(dtype) if not issubclass(dtype, _nx.inexact): dtype = _nx.float_ return asarray(a, dtype=dtype)
Example #21
Source File: type_check.py From lambda-packs with MIT License | 5 votes |
def asfarray(a, dtype=_nx.float_): """ Return an array converted to a float type. Parameters ---------- a : array_like The input array. dtype : str or dtype object, optional Float type code to coerce input array `a`. If `dtype` is one of the 'int' dtypes, it is replaced with float64. Returns ------- out : ndarray The input `a` as a float ndarray. Examples -------- >>> np.asfarray([2, 3]) array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='float') array([ 2., 3.]) >>> np.asfarray([2, 3], dtype='int8') array([ 2., 3.]) """ if not _nx.issubdtype(dtype, _nx.inexact): dtype = _nx.float_ return asarray(a, dtype=dtype)
Example #22
Source File: type_check.py From Carnets with BSD 3-Clause "New" or "Revised" License | 4 votes |
def common_type(*arrays): """ Return a scalar type which is common to the input arrays. The return type will always be an inexact (i.e. floating point) scalar type, even if all the arrays are integer arrays. If one of the inputs is an integer array, the minimum precision type that is returned is a 64-bit floating point dtype. All input arrays except int64 and uint64 can be safely cast to the returned dtype without loss of information. Parameters ---------- array1, array2, ... : ndarrays Input arrays. Returns ------- out : data type code Data type code. See Also -------- dtype, mintypecode Examples -------- >>> np.common_type(np.arange(2, dtype=np.float32)) <type 'numpy.float32'> >>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2)) <type 'numpy.float64'> >>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0])) <type 'numpy.complex128'> """ is_complex = False precision = 0 for a in arrays: t = a.dtype.type if iscomplexobj(a): is_complex = True if issubclass(t, _nx.integer): p = 2 # array_precision[_nx.double] else: p = array_precision.get(t, None) if p is None: raise TypeError("can't get common type for non-numeric array") precision = max(precision, p) if is_complex: return array_type[1][precision] else: return array_type[0][precision]
Example #23
Source File: type_check.py From Fluid-Designer with GNU General Public License v3.0 | 4 votes |
def common_type(*arrays): """ Return a scalar type which is common to the input arrays. The return type will always be an inexact (i.e. floating point) scalar type, even if all the arrays are integer arrays. If one of the inputs is an integer array, the minimum precision type that is returned is a 64-bit floating point dtype. All input arrays can be safely cast to the returned dtype without loss of information. Parameters ---------- array1, array2, ... : ndarrays Input arrays. Returns ------- out : data type code Data type code. See Also -------- dtype, mintypecode Examples -------- >>> np.common_type(np.arange(2, dtype=np.float32)) <type 'numpy.float32'> >>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2)) <type 'numpy.float64'> >>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0])) <type 'numpy.complex128'> """ is_complex = False precision = 0 for a in arrays: t = a.dtype.type if iscomplexobj(a): is_complex = True if issubclass(t, _nx.integer): p = 1 else: p = array_precision.get(t, None) if p is None: raise TypeError("can't get common type for non-numeric array") precision = max(precision, p) if is_complex: return array_type[1][precision] else: return array_type[0][precision]
Example #24
Source File: type_check.py From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License | 4 votes |
def common_type(*arrays): """ Return a scalar type which is common to the input arrays. The return type will always be an inexact (i.e. floating point) scalar type, even if all the arrays are integer arrays. If one of the inputs is an integer array, the minimum precision type that is returned is a 64-bit floating point dtype. All input arrays except int64 and uint64 can be safely cast to the returned dtype without loss of information. Parameters ---------- array1, array2, ... : ndarrays Input arrays. Returns ------- out : data type code Data type code. See Also -------- dtype, mintypecode Examples -------- >>> np.common_type(np.arange(2, dtype=np.float32)) <type 'numpy.float32'> >>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2)) <type 'numpy.float64'> >>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0])) <type 'numpy.complex128'> """ is_complex = False precision = 0 for a in arrays: t = a.dtype.type if iscomplexobj(a): is_complex = True if issubclass(t, _nx.integer): p = 2 # array_precision[_nx.double] else: p = array_precision.get(t, None) if p is None: raise TypeError("can't get common type for non-numeric array") precision = max(precision, p) if is_complex: return array_type[1][precision] else: return array_type[0][precision]
Example #25
Source File: type_check.py From coffeegrindsize with MIT License | 4 votes |
def common_type(*arrays): """ Return a scalar type which is common to the input arrays. The return type will always be an inexact (i.e. floating point) scalar type, even if all the arrays are integer arrays. If one of the inputs is an integer array, the minimum precision type that is returned is a 64-bit floating point dtype. All input arrays except int64 and uint64 can be safely cast to the returned dtype without loss of information. Parameters ---------- array1, array2, ... : ndarrays Input arrays. Returns ------- out : data type code Data type code. See Also -------- dtype, mintypecode Examples -------- >>> np.common_type(np.arange(2, dtype=np.float32)) <type 'numpy.float32'> >>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2)) <type 'numpy.float64'> >>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0])) <type 'numpy.complex128'> """ is_complex = False precision = 0 for a in arrays: t = a.dtype.type if iscomplexobj(a): is_complex = True if issubclass(t, _nx.integer): p = 2 # array_precision[_nx.double] else: p = array_precision.get(t, None) if p is None: raise TypeError("can't get common type for non-numeric array") precision = max(precision, p) if is_complex: return array_type[1][precision] else: return array_type[0][precision]
Example #26
Source File: type_check.py From twitter-stock-recommendation with MIT License | 4 votes |
def common_type(*arrays): """ Return a scalar type which is common to the input arrays. The return type will always be an inexact (i.e. floating point) scalar type, even if all the arrays are integer arrays. If one of the inputs is an integer array, the minimum precision type that is returned is a 64-bit floating point dtype. All input arrays except int64 and uint64 can be safely cast to the returned dtype without loss of information. Parameters ---------- array1, array2, ... : ndarrays Input arrays. Returns ------- out : data type code Data type code. See Also -------- dtype, mintypecode Examples -------- >>> np.common_type(np.arange(2, dtype=np.float32)) <type 'numpy.float32'> >>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2)) <type 'numpy.float64'> >>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0])) <type 'numpy.complex128'> """ is_complex = False precision = 0 for a in arrays: t = a.dtype.type if iscomplexobj(a): is_complex = True if issubclass(t, _nx.integer): p = 2 # array_precision[_nx.double] else: p = array_precision.get(t, None) if p is None: raise TypeError("can't get common type for non-numeric array") precision = max(precision, p) if is_complex: return array_type[1][precision] else: return array_type[0][precision]
Example #27
Source File: type_check.py From elasticintel with GNU General Public License v3.0 | 4 votes |
def common_type(*arrays): """ Return a scalar type which is common to the input arrays. The return type will always be an inexact (i.e. floating point) scalar type, even if all the arrays are integer arrays. If one of the inputs is an integer array, the minimum precision type that is returned is a 64-bit floating point dtype. All input arrays can be safely cast to the returned dtype without loss of information. Parameters ---------- array1, array2, ... : ndarrays Input arrays. Returns ------- out : data type code Data type code. See Also -------- dtype, mintypecode Examples -------- >>> np.common_type(np.arange(2, dtype=np.float32)) <type 'numpy.float32'> >>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2)) <type 'numpy.float64'> >>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0])) <type 'numpy.complex128'> """ is_complex = False precision = 0 for a in arrays: t = a.dtype.type if iscomplexobj(a): is_complex = True if issubclass(t, _nx.integer): p = 2 # array_precision[_nx.double] else: p = array_precision.get(t, None) if p is None: raise TypeError("can't get common type for non-numeric array") precision = max(precision, p) if is_complex: return array_type[1][precision] else: return array_type[0][precision]
Example #28
Source File: type_check.py From keras-lambda with MIT License | 4 votes |
def common_type(*arrays): """ Return a scalar type which is common to the input arrays. The return type will always be an inexact (i.e. floating point) scalar type, even if all the arrays are integer arrays. If one of the inputs is an integer array, the minimum precision type that is returned is a 64-bit floating point dtype. All input arrays can be safely cast to the returned dtype without loss of information. Parameters ---------- array1, array2, ... : ndarrays Input arrays. Returns ------- out : data type code Data type code. See Also -------- dtype, mintypecode Examples -------- >>> np.common_type(np.arange(2, dtype=np.float32)) <type 'numpy.float32'> >>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2)) <type 'numpy.float64'> >>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0])) <type 'numpy.complex128'> """ is_complex = False precision = 0 for a in arrays: t = a.dtype.type if iscomplexobj(a): is_complex = True if issubclass(t, _nx.integer): p = 2 # array_precision[_nx.double] else: p = array_precision.get(t, None) if p is None: raise TypeError("can't get common type for non-numeric array") precision = max(precision, p) if is_complex: return array_type[1][precision] else: return array_type[0][precision]
Example #29
Source File: type_check.py From Splunking-Crime with GNU Affero General Public License v3.0 | 4 votes |
def common_type(*arrays): """ Return a scalar type which is common to the input arrays. The return type will always be an inexact (i.e. floating point) scalar type, even if all the arrays are integer arrays. If one of the inputs is an integer array, the minimum precision type that is returned is a 64-bit floating point dtype. All input arrays can be safely cast to the returned dtype without loss of information. Parameters ---------- array1, array2, ... : ndarrays Input arrays. Returns ------- out : data type code Data type code. See Also -------- dtype, mintypecode Examples -------- >>> np.common_type(np.arange(2, dtype=np.float32)) <type 'numpy.float32'> >>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2)) <type 'numpy.float64'> >>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0])) <type 'numpy.complex128'> """ is_complex = False precision = 0 for a in arrays: t = a.dtype.type if iscomplexobj(a): is_complex = True if issubclass(t, _nx.integer): p = 2 # array_precision[_nx.double] else: p = array_precision.get(t, None) if p is None: raise TypeError("can't get common type for non-numeric array") precision = max(precision, p) if is_complex: return array_type[1][precision] else: return array_type[0][precision]
Example #30
Source File: type_check.py From ImageFusion with MIT License | 4 votes |
def common_type(*arrays): """ Return a scalar type which is common to the input arrays. The return type will always be an inexact (i.e. floating point) scalar type, even if all the arrays are integer arrays. If one of the inputs is an integer array, the minimum precision type that is returned is a 64-bit floating point dtype. All input arrays can be safely cast to the returned dtype without loss of information. Parameters ---------- array1, array2, ... : ndarrays Input arrays. Returns ------- out : data type code Data type code. See Also -------- dtype, mintypecode Examples -------- >>> np.common_type(np.arange(2, dtype=np.float32)) <type 'numpy.float32'> >>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2)) <type 'numpy.float64'> >>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0])) <type 'numpy.complex128'> """ is_complex = False precision = 0 for a in arrays: t = a.dtype.type if iscomplexobj(a): is_complex = True if issubclass(t, _nx.integer): p = 1 else: p = array_precision.get(t, None) if p is None: raise TypeError("can't get common type for non-numeric array") precision = max(precision, p) if is_complex: return array_type[1][precision] else: return array_type[0][precision]