Python numpy.core.numeric.double() Examples

The following are 30 code examples of numpy.core.numeric.double(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module numpy.core.numeric , or try the search function .
Example #1
Source File: type_check.py    From coffeegrindsize with MIT License 4 votes vote down vote up
def common_type(*arrays):
    """
    Return a scalar type which is common to the input arrays.

    The return type will always be an inexact (i.e. floating point) scalar
    type, even if all the arrays are integer arrays. If one of the inputs is
    an integer array, the minimum precision type that is returned is a
    64-bit floating point dtype.

    All input arrays except int64 and uint64 can be safely cast to the
    returned dtype without loss of information.

    Parameters
    ----------
    array1, array2, ... : ndarrays
        Input arrays.

    Returns
    -------
    out : data type code
        Data type code.

    See Also
    --------
    dtype, mintypecode

    Examples
    --------
    >>> np.common_type(np.arange(2, dtype=np.float32))
    <type 'numpy.float32'>
    >>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2))
    <type 'numpy.float64'>
    >>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0]))
    <type 'numpy.complex128'>

    """
    is_complex = False
    precision = 0
    for a in arrays:
        t = a.dtype.type
        if iscomplexobj(a):
            is_complex = True
        if issubclass(t, _nx.integer):
            p = 2  # array_precision[_nx.double]
        else:
            p = array_precision.get(t, None)
            if p is None:
                raise TypeError("can't get common type for non-numeric array")
        precision = max(precision, p)
    if is_complex:
        return array_type[1][precision]
    else:
        return array_type[0][precision] 
Example #2
Source File: type_check.py    From pySINDy with MIT License 4 votes vote down vote up
def common_type(*arrays):
    """
    Return a scalar type which is common to the input arrays.

    The return type will always be an inexact (i.e. floating point) scalar
    type, even if all the arrays are integer arrays. If one of the inputs is
    an integer array, the minimum precision type that is returned is a
    64-bit floating point dtype.

    All input arrays except int64 and uint64 can be safely cast to the
    returned dtype without loss of information.

    Parameters
    ----------
    array1, array2, ... : ndarrays
        Input arrays.

    Returns
    -------
    out : data type code
        Data type code.

    See Also
    --------
    dtype, mintypecode

    Examples
    --------
    >>> np.common_type(np.arange(2, dtype=np.float32))
    <type 'numpy.float32'>
    >>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2))
    <type 'numpy.float64'>
    >>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0]))
    <type 'numpy.complex128'>

    """
    is_complex = False
    precision = 0
    for a in arrays:
        t = a.dtype.type
        if iscomplexobj(a):
            is_complex = True
        if issubclass(t, _nx.integer):
            p = 2  # array_precision[_nx.double]
        else:
            p = array_precision.get(t, None)
            if p is None:
                raise TypeError("can't get common type for non-numeric array")
        precision = max(precision, p)
    if is_complex:
        return array_type[1][precision]
    else:
        return array_type[0][precision] 
Example #3
Source File: type_check.py    From mxnet-lambda with Apache License 2.0 4 votes vote down vote up
def typename(char):
    """
    Return a description for the given data type code.

    Parameters
    ----------
    char : str
        Data type code.

    Returns
    -------
    out : str
        Description of the input data type code.

    See Also
    --------
    dtype, typecodes

    Examples
    --------
    >>> typechars = ['S1', '?', 'B', 'D', 'G', 'F', 'I', 'H', 'L', 'O', 'Q',
    ...              'S', 'U', 'V', 'b', 'd', 'g', 'f', 'i', 'h', 'l', 'q']
    >>> for typechar in typechars:
    ...     print(typechar, ' : ', np.typename(typechar))
    ...
    S1  :  character
    ?  :  bool
    B  :  unsigned char
    D  :  complex double precision
    G  :  complex long double precision
    F  :  complex single precision
    I  :  unsigned integer
    H  :  unsigned short
    L  :  unsigned long integer
    O  :  object
    Q  :  unsigned long long integer
    S  :  string
    U  :  unicode
    V  :  void
    b  :  signed char
    d  :  double precision
    g  :  long precision
    f  :  single precision
    i  :  integer
    h  :  short
    l  :  long integer
    q  :  long long integer

    """
    return _namefromtype[char]

#-----------------------------------------------------------------------------

#determine the "minimum common type" for a group of arrays. 
Example #4
Source File: type_check.py    From mxnet-lambda with Apache License 2.0 4 votes vote down vote up
def common_type(*arrays):
    """
    Return a scalar type which is common to the input arrays.

    The return type will always be an inexact (i.e. floating point) scalar
    type, even if all the arrays are integer arrays. If one of the inputs is
    an integer array, the minimum precision type that is returned is a
    64-bit floating point dtype.

    All input arrays can be safely cast to the returned dtype without loss
    of information.

    Parameters
    ----------
    array1, array2, ... : ndarrays
        Input arrays.

    Returns
    -------
    out : data type code
        Data type code.

    See Also
    --------
    dtype, mintypecode

    Examples
    --------
    >>> np.common_type(np.arange(2, dtype=np.float32))
    <type 'numpy.float32'>
    >>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2))
    <type 'numpy.float64'>
    >>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0]))
    <type 'numpy.complex128'>

    """
    is_complex = False
    precision = 0
    for a in arrays:
        t = a.dtype.type
        if iscomplexobj(a):
            is_complex = True
        if issubclass(t, _nx.integer):
            p = 2  # array_precision[_nx.double]
        else:
            p = array_precision.get(t, None)
            if p is None:
                raise TypeError("can't get common type for non-numeric array")
        precision = max(precision, p)
    if is_complex:
        return array_type[1][precision]
    else:
        return array_type[0][precision] 
Example #5
Source File: type_check.py    From ImageFusion with MIT License 4 votes vote down vote up
def typename(char):
    """
    Return a description for the given data type code.

    Parameters
    ----------
    char : str
        Data type code.

    Returns
    -------
    out : str
        Description of the input data type code.

    See Also
    --------
    dtype, typecodes

    Examples
    --------
    >>> typechars = ['S1', '?', 'B', 'D', 'G', 'F', 'I', 'H', 'L', 'O', 'Q',
    ...              'S', 'U', 'V', 'b', 'd', 'g', 'f', 'i', 'h', 'l', 'q']
    >>> for typechar in typechars:
    ...     print typechar, ' : ', np.typename(typechar)
    ...
    S1  :  character
    ?  :  bool
    B  :  unsigned char
    D  :  complex double precision
    G  :  complex long double precision
    F  :  complex single precision
    I  :  unsigned integer
    H  :  unsigned short
    L  :  unsigned long integer
    O  :  object
    Q  :  unsigned long long integer
    S  :  string
    U  :  unicode
    V  :  void
    b  :  signed char
    d  :  double precision
    g  :  long precision
    f  :  single precision
    i  :  integer
    h  :  short
    l  :  long integer
    q  :  long long integer

    """
    return _namefromtype[char]

#-----------------------------------------------------------------------------

#determine the "minimum common type" for a group of arrays. 
Example #6
Source File: type_check.py    From Splunking-Crime with GNU Affero General Public License v3.0 4 votes vote down vote up
def typename(char):
    """
    Return a description for the given data type code.

    Parameters
    ----------
    char : str
        Data type code.

    Returns
    -------
    out : str
        Description of the input data type code.

    See Also
    --------
    dtype, typecodes

    Examples
    --------
    >>> typechars = ['S1', '?', 'B', 'D', 'G', 'F', 'I', 'H', 'L', 'O', 'Q',
    ...              'S', 'U', 'V', 'b', 'd', 'g', 'f', 'i', 'h', 'l', 'q']
    >>> for typechar in typechars:
    ...     print(typechar, ' : ', np.typename(typechar))
    ...
    S1  :  character
    ?  :  bool
    B  :  unsigned char
    D  :  complex double precision
    G  :  complex long double precision
    F  :  complex single precision
    I  :  unsigned integer
    H  :  unsigned short
    L  :  unsigned long integer
    O  :  object
    Q  :  unsigned long long integer
    S  :  string
    U  :  unicode
    V  :  void
    b  :  signed char
    d  :  double precision
    g  :  long precision
    f  :  single precision
    i  :  integer
    h  :  short
    l  :  long integer
    q  :  long long integer

    """
    return _namefromtype[char]

#-----------------------------------------------------------------------------

#determine the "minimum common type" for a group of arrays. 
Example #7
Source File: type_check.py    From Splunking-Crime with GNU Affero General Public License v3.0 4 votes vote down vote up
def common_type(*arrays):
    """
    Return a scalar type which is common to the input arrays.

    The return type will always be an inexact (i.e. floating point) scalar
    type, even if all the arrays are integer arrays. If one of the inputs is
    an integer array, the minimum precision type that is returned is a
    64-bit floating point dtype.

    All input arrays can be safely cast to the returned dtype without loss
    of information.

    Parameters
    ----------
    array1, array2, ... : ndarrays
        Input arrays.

    Returns
    -------
    out : data type code
        Data type code.

    See Also
    --------
    dtype, mintypecode

    Examples
    --------
    >>> np.common_type(np.arange(2, dtype=np.float32))
    <type 'numpy.float32'>
    >>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2))
    <type 'numpy.float64'>
    >>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0]))
    <type 'numpy.complex128'>

    """
    is_complex = False
    precision = 0
    for a in arrays:
        t = a.dtype.type
        if iscomplexobj(a):
            is_complex = True
        if issubclass(t, _nx.integer):
            p = 2  # array_precision[_nx.double]
        else:
            p = array_precision.get(t, None)
            if p is None:
                raise TypeError("can't get common type for non-numeric array")
        precision = max(precision, p)
    if is_complex:
        return array_type[1][precision]
    else:
        return array_type[0][precision] 
Example #8
Source File: type_check.py    From elasticintel with GNU General Public License v3.0 4 votes vote down vote up
def typename(char):
    """
    Return a description for the given data type code.

    Parameters
    ----------
    char : str
        Data type code.

    Returns
    -------
    out : str
        Description of the input data type code.

    See Also
    --------
    dtype, typecodes

    Examples
    --------
    >>> typechars = ['S1', '?', 'B', 'D', 'G', 'F', 'I', 'H', 'L', 'O', 'Q',
    ...              'S', 'U', 'V', 'b', 'd', 'g', 'f', 'i', 'h', 'l', 'q']
    >>> for typechar in typechars:
    ...     print(typechar, ' : ', np.typename(typechar))
    ...
    S1  :  character
    ?  :  bool
    B  :  unsigned char
    D  :  complex double precision
    G  :  complex long double precision
    F  :  complex single precision
    I  :  unsigned integer
    H  :  unsigned short
    L  :  unsigned long integer
    O  :  object
    Q  :  unsigned long long integer
    S  :  string
    U  :  unicode
    V  :  void
    b  :  signed char
    d  :  double precision
    g  :  long precision
    f  :  single precision
    i  :  integer
    h  :  short
    l  :  long integer
    q  :  long long integer

    """
    return _namefromtype[char]

#-----------------------------------------------------------------------------

#determine the "minimum common type" for a group of arrays. 
Example #9
Source File: type_check.py    From elasticintel with GNU General Public License v3.0 4 votes vote down vote up
def common_type(*arrays):
    """
    Return a scalar type which is common to the input arrays.

    The return type will always be an inexact (i.e. floating point) scalar
    type, even if all the arrays are integer arrays. If one of the inputs is
    an integer array, the minimum precision type that is returned is a
    64-bit floating point dtype.

    All input arrays can be safely cast to the returned dtype without loss
    of information.

    Parameters
    ----------
    array1, array2, ... : ndarrays
        Input arrays.

    Returns
    -------
    out : data type code
        Data type code.

    See Also
    --------
    dtype, mintypecode

    Examples
    --------
    >>> np.common_type(np.arange(2, dtype=np.float32))
    <type 'numpy.float32'>
    >>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2))
    <type 'numpy.float64'>
    >>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0]))
    <type 'numpy.complex128'>

    """
    is_complex = False
    precision = 0
    for a in arrays:
        t = a.dtype.type
        if iscomplexobj(a):
            is_complex = True
        if issubclass(t, _nx.integer):
            p = 2  # array_precision[_nx.double]
        else:
            p = array_precision.get(t, None)
            if p is None:
                raise TypeError("can't get common type for non-numeric array")
        precision = max(precision, p)
    if is_complex:
        return array_type[1][precision]
    else:
        return array_type[0][precision] 
Example #10
Source File: type_check.py    From coffeegrindsize with MIT License 4 votes vote down vote up
def typename(char):
    """
    Return a description for the given data type code.

    Parameters
    ----------
    char : str
        Data type code.

    Returns
    -------
    out : str
        Description of the input data type code.

    See Also
    --------
    dtype, typecodes

    Examples
    --------
    >>> typechars = ['S1', '?', 'B', 'D', 'G', 'F', 'I', 'H', 'L', 'O', 'Q',
    ...              'S', 'U', 'V', 'b', 'd', 'g', 'f', 'i', 'h', 'l', 'q']
    >>> for typechar in typechars:
    ...     print(typechar, ' : ', np.typename(typechar))
    ...
    S1  :  character
    ?  :  bool
    B  :  unsigned char
    D  :  complex double precision
    G  :  complex long double precision
    F  :  complex single precision
    I  :  unsigned integer
    H  :  unsigned short
    L  :  unsigned long integer
    O  :  object
    Q  :  unsigned long long integer
    S  :  string
    U  :  unicode
    V  :  void
    b  :  signed char
    d  :  double precision
    g  :  long precision
    f  :  single precision
    i  :  integer
    h  :  short
    l  :  long integer
    q  :  long long integer

    """
    return _namefromtype[char]

#-----------------------------------------------------------------------------

#determine the "minimum common type" for a group of arrays. 
Example #11
Source File: type_check.py    From pySINDy with MIT License 4 votes vote down vote up
def typename(char):
    """
    Return a description for the given data type code.

    Parameters
    ----------
    char : str
        Data type code.

    Returns
    -------
    out : str
        Description of the input data type code.

    See Also
    --------
    dtype, typecodes

    Examples
    --------
    >>> typechars = ['S1', '?', 'B', 'D', 'G', 'F', 'I', 'H', 'L', 'O', 'Q',
    ...              'S', 'U', 'V', 'b', 'd', 'g', 'f', 'i', 'h', 'l', 'q']
    >>> for typechar in typechars:
    ...     print(typechar, ' : ', np.typename(typechar))
    ...
    S1  :  character
    ?  :  bool
    B  :  unsigned char
    D  :  complex double precision
    G  :  complex long double precision
    F  :  complex single precision
    I  :  unsigned integer
    H  :  unsigned short
    L  :  unsigned long integer
    O  :  object
    Q  :  unsigned long long integer
    S  :  string
    U  :  unicode
    V  :  void
    b  :  signed char
    d  :  double precision
    g  :  long precision
    f  :  single precision
    i  :  integer
    h  :  short
    l  :  long integer
    q  :  long long integer

    """
    return _namefromtype[char]

#-----------------------------------------------------------------------------

#determine the "minimum common type" for a group of arrays. 
Example #12
Source File: type_check.py    From Carnets with BSD 3-Clause "New" or "Revised" License 4 votes vote down vote up
def typename(char):
    """
    Return a description for the given data type code.

    Parameters
    ----------
    char : str
        Data type code.

    Returns
    -------
    out : str
        Description of the input data type code.

    See Also
    --------
    dtype, typecodes

    Examples
    --------
    >>> typechars = ['S1', '?', 'B', 'D', 'G', 'F', 'I', 'H', 'L', 'O', 'Q',
    ...              'S', 'U', 'V', 'b', 'd', 'g', 'f', 'i', 'h', 'l', 'q']
    >>> for typechar in typechars:
    ...     print(typechar, ' : ', np.typename(typechar))
    ...
    S1  :  character
    ?  :  bool
    B  :  unsigned char
    D  :  complex double precision
    G  :  complex long double precision
    F  :  complex single precision
    I  :  unsigned integer
    H  :  unsigned short
    L  :  unsigned long integer
    O  :  object
    Q  :  unsigned long long integer
    S  :  string
    U  :  unicode
    V  :  void
    b  :  signed char
    d  :  double precision
    g  :  long precision
    f  :  single precision
    i  :  integer
    h  :  short
    l  :  long integer
    q  :  long long integer

    """
    return _namefromtype[char]

#-----------------------------------------------------------------------------

#determine the "minimum common type" for a group of arrays. 
Example #13
Source File: type_check.py    From Carnets with BSD 3-Clause "New" or "Revised" License 4 votes vote down vote up
def common_type(*arrays):
    """
    Return a scalar type which is common to the input arrays.

    The return type will always be an inexact (i.e. floating point) scalar
    type, even if all the arrays are integer arrays. If one of the inputs is
    an integer array, the minimum precision type that is returned is a
    64-bit floating point dtype.

    All input arrays except int64 and uint64 can be safely cast to the
    returned dtype without loss of information.

    Parameters
    ----------
    array1, array2, ... : ndarrays
        Input arrays.

    Returns
    -------
    out : data type code
        Data type code.

    See Also
    --------
    dtype, mintypecode

    Examples
    --------
    >>> np.common_type(np.arange(2, dtype=np.float32))
    <type 'numpy.float32'>
    >>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2))
    <type 'numpy.float64'>
    >>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0]))
    <type 'numpy.complex128'>

    """
    is_complex = False
    precision = 0
    for a in arrays:
        t = a.dtype.type
        if iscomplexobj(a):
            is_complex = True
        if issubclass(t, _nx.integer):
            p = 2  # array_precision[_nx.double]
        else:
            p = array_precision.get(t, None)
            if p is None:
                raise TypeError("can't get common type for non-numeric array")
        precision = max(precision, p)
    if is_complex:
        return array_type[1][precision]
    else:
        return array_type[0][precision] 
Example #14
Source File: type_check.py    From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License 4 votes vote down vote up
def typename(char):
    """
    Return a description for the given data type code.

    Parameters
    ----------
    char : str
        Data type code.

    Returns
    -------
    out : str
        Description of the input data type code.

    See Also
    --------
    dtype, typecodes

    Examples
    --------
    >>> typechars = ['S1', '?', 'B', 'D', 'G', 'F', 'I', 'H', 'L', 'O', 'Q',
    ...              'S', 'U', 'V', 'b', 'd', 'g', 'f', 'i', 'h', 'l', 'q']
    >>> for typechar in typechars:
    ...     print(typechar, ' : ', np.typename(typechar))
    ...
    S1  :  character
    ?  :  bool
    B  :  unsigned char
    D  :  complex double precision
    G  :  complex long double precision
    F  :  complex single precision
    I  :  unsigned integer
    H  :  unsigned short
    L  :  unsigned long integer
    O  :  object
    Q  :  unsigned long long integer
    S  :  string
    U  :  unicode
    V  :  void
    b  :  signed char
    d  :  double precision
    g  :  long precision
    f  :  single precision
    i  :  integer
    h  :  short
    l  :  long integer
    q  :  long long integer

    """
    return _namefromtype[char]

#-----------------------------------------------------------------------------

#determine the "minimum common type" for a group of arrays. 
Example #15
Source File: type_check.py    From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License 4 votes vote down vote up
def common_type(*arrays):
    """
    Return a scalar type which is common to the input arrays.

    The return type will always be an inexact (i.e. floating point) scalar
    type, even if all the arrays are integer arrays. If one of the inputs is
    an integer array, the minimum precision type that is returned is a
    64-bit floating point dtype.

    All input arrays except int64 and uint64 can be safely cast to the
    returned dtype without loss of information.

    Parameters
    ----------
    array1, array2, ... : ndarrays
        Input arrays.

    Returns
    -------
    out : data type code
        Data type code.

    See Also
    --------
    dtype, mintypecode

    Examples
    --------
    >>> np.common_type(np.arange(2, dtype=np.float32))
    <type 'numpy.float32'>
    >>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2))
    <type 'numpy.float64'>
    >>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0]))
    <type 'numpy.complex128'>

    """
    is_complex = False
    precision = 0
    for a in arrays:
        t = a.dtype.type
        if iscomplexobj(a):
            is_complex = True
        if issubclass(t, _nx.integer):
            p = 2  # array_precision[_nx.double]
        else:
            p = array_precision.get(t, None)
            if p is None:
                raise TypeError("can't get common type for non-numeric array")
        precision = max(precision, p)
    if is_complex:
        return array_type[1][precision]
    else:
        return array_type[0][precision] 
Example #16
Source File: type_check.py    From twitter-stock-recommendation with MIT License 4 votes vote down vote up
def typename(char):
    """
    Return a description for the given data type code.

    Parameters
    ----------
    char : str
        Data type code.

    Returns
    -------
    out : str
        Description of the input data type code.

    See Also
    --------
    dtype, typecodes

    Examples
    --------
    >>> typechars = ['S1', '?', 'B', 'D', 'G', 'F', 'I', 'H', 'L', 'O', 'Q',
    ...              'S', 'U', 'V', 'b', 'd', 'g', 'f', 'i', 'h', 'l', 'q']
    >>> for typechar in typechars:
    ...     print(typechar, ' : ', np.typename(typechar))
    ...
    S1  :  character
    ?  :  bool
    B  :  unsigned char
    D  :  complex double precision
    G  :  complex long double precision
    F  :  complex single precision
    I  :  unsigned integer
    H  :  unsigned short
    L  :  unsigned long integer
    O  :  object
    Q  :  unsigned long long integer
    S  :  string
    U  :  unicode
    V  :  void
    b  :  signed char
    d  :  double precision
    g  :  long precision
    f  :  single precision
    i  :  integer
    h  :  short
    l  :  long integer
    q  :  long long integer

    """
    return _namefromtype[char]

#-----------------------------------------------------------------------------

#determine the "minimum common type" for a group of arrays. 
Example #17
Source File: type_check.py    From twitter-stock-recommendation with MIT License 4 votes vote down vote up
def common_type(*arrays):
    """
    Return a scalar type which is common to the input arrays.

    The return type will always be an inexact (i.e. floating point) scalar
    type, even if all the arrays are integer arrays. If one of the inputs is
    an integer array, the minimum precision type that is returned is a
    64-bit floating point dtype.

    All input arrays except int64 and uint64 can be safely cast to the
    returned dtype without loss of information.

    Parameters
    ----------
    array1, array2, ... : ndarrays
        Input arrays.

    Returns
    -------
    out : data type code
        Data type code.

    See Also
    --------
    dtype, mintypecode

    Examples
    --------
    >>> np.common_type(np.arange(2, dtype=np.float32))
    <type 'numpy.float32'>
    >>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2))
    <type 'numpy.float64'>
    >>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0]))
    <type 'numpy.complex128'>

    """
    is_complex = False
    precision = 0
    for a in arrays:
        t = a.dtype.type
        if iscomplexobj(a):
            is_complex = True
        if issubclass(t, _nx.integer):
            p = 2  # array_precision[_nx.double]
        else:
            p = array_precision.get(t, None)
            if p is None:
                raise TypeError("can't get common type for non-numeric array")
        precision = max(precision, p)
    if is_complex:
        return array_type[1][precision]
    else:
        return array_type[0][precision] 
Example #18
Source File: type_check.py    From keras-lambda with MIT License 4 votes vote down vote up
def typename(char):
    """
    Return a description for the given data type code.

    Parameters
    ----------
    char : str
        Data type code.

    Returns
    -------
    out : str
        Description of the input data type code.

    See Also
    --------
    dtype, typecodes

    Examples
    --------
    >>> typechars = ['S1', '?', 'B', 'D', 'G', 'F', 'I', 'H', 'L', 'O', 'Q',
    ...              'S', 'U', 'V', 'b', 'd', 'g', 'f', 'i', 'h', 'l', 'q']
    >>> for typechar in typechars:
    ...     print(typechar, ' : ', np.typename(typechar))
    ...
    S1  :  character
    ?  :  bool
    B  :  unsigned char
    D  :  complex double precision
    G  :  complex long double precision
    F  :  complex single precision
    I  :  unsigned integer
    H  :  unsigned short
    L  :  unsigned long integer
    O  :  object
    Q  :  unsigned long long integer
    S  :  string
    U  :  unicode
    V  :  void
    b  :  signed char
    d  :  double precision
    g  :  long precision
    f  :  single precision
    i  :  integer
    h  :  short
    l  :  long integer
    q  :  long long integer

    """
    return _namefromtype[char]

#-----------------------------------------------------------------------------

#determine the "minimum common type" for a group of arrays. 
Example #19
Source File: type_check.py    From keras-lambda with MIT License 4 votes vote down vote up
def common_type(*arrays):
    """
    Return a scalar type which is common to the input arrays.

    The return type will always be an inexact (i.e. floating point) scalar
    type, even if all the arrays are integer arrays. If one of the inputs is
    an integer array, the minimum precision type that is returned is a
    64-bit floating point dtype.

    All input arrays can be safely cast to the returned dtype without loss
    of information.

    Parameters
    ----------
    array1, array2, ... : ndarrays
        Input arrays.

    Returns
    -------
    out : data type code
        Data type code.

    See Also
    --------
    dtype, mintypecode

    Examples
    --------
    >>> np.common_type(np.arange(2, dtype=np.float32))
    <type 'numpy.float32'>
    >>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2))
    <type 'numpy.float64'>
    >>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0]))
    <type 'numpy.complex128'>

    """
    is_complex = False
    precision = 0
    for a in arrays:
        t = a.dtype.type
        if iscomplexobj(a):
            is_complex = True
        if issubclass(t, _nx.integer):
            p = 2  # array_precision[_nx.double]
        else:
            p = array_precision.get(t, None)
            if p is None:
                raise TypeError("can't get common type for non-numeric array")
        precision = max(precision, p)
    if is_complex:
        return array_type[1][precision]
    else:
        return array_type[0][precision] 
Example #20
Source File: type_check.py    From vnpy_crypto with MIT License 4 votes vote down vote up
def common_type(*arrays):
    """
    Return a scalar type which is common to the input arrays.

    The return type will always be an inexact (i.e. floating point) scalar
    type, even if all the arrays are integer arrays. If one of the inputs is
    an integer array, the minimum precision type that is returned is a
    64-bit floating point dtype.

    All input arrays except int64 and uint64 can be safely cast to the 
    returned dtype without loss of information.

    Parameters
    ----------
    array1, array2, ... : ndarrays
        Input arrays.

    Returns
    -------
    out : data type code
        Data type code.

    See Also
    --------
    dtype, mintypecode

    Examples
    --------
    >>> np.common_type(np.arange(2, dtype=np.float32))
    <type 'numpy.float32'>
    >>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2))
    <type 'numpy.float64'>
    >>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0]))
    <type 'numpy.complex128'>

    """
    is_complex = False
    precision = 0
    for a in arrays:
        t = a.dtype.type
        if iscomplexobj(a):
            is_complex = True
        if issubclass(t, _nx.integer):
            p = 2  # array_precision[_nx.double]
        else:
            p = array_precision.get(t, None)
            if p is None:
                raise TypeError("can't get common type for non-numeric array")
        precision = max(precision, p)
    if is_complex:
        return array_type[1][precision]
    else:
        return array_type[0][precision] 
Example #21
Source File: type_check.py    From recruit with Apache License 2.0 4 votes vote down vote up
def common_type(*arrays):
    """
    Return a scalar type which is common to the input arrays.

    The return type will always be an inexact (i.e. floating point) scalar
    type, even if all the arrays are integer arrays. If one of the inputs is
    an integer array, the minimum precision type that is returned is a
    64-bit floating point dtype.

    All input arrays except int64 and uint64 can be safely cast to the
    returned dtype without loss of information.

    Parameters
    ----------
    array1, array2, ... : ndarrays
        Input arrays.

    Returns
    -------
    out : data type code
        Data type code.

    See Also
    --------
    dtype, mintypecode

    Examples
    --------
    >>> np.common_type(np.arange(2, dtype=np.float32))
    <type 'numpy.float32'>
    >>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2))
    <type 'numpy.float64'>
    >>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0]))
    <type 'numpy.complex128'>

    """
    is_complex = False
    precision = 0
    for a in arrays:
        t = a.dtype.type
        if iscomplexobj(a):
            is_complex = True
        if issubclass(t, _nx.integer):
            p = 2  # array_precision[_nx.double]
        else:
            p = array_precision.get(t, None)
            if p is None:
                raise TypeError("can't get common type for non-numeric array")
        precision = max(precision, p)
    if is_complex:
        return array_type[1][precision]
    else:
        return array_type[0][precision] 
Example #22
Source File: type_check.py    From lambda-packs with MIT License 4 votes vote down vote up
def typename(char):
    """
    Return a description for the given data type code.

    Parameters
    ----------
    char : str
        Data type code.

    Returns
    -------
    out : str
        Description of the input data type code.

    See Also
    --------
    dtype, typecodes

    Examples
    --------
    >>> typechars = ['S1', '?', 'B', 'D', 'G', 'F', 'I', 'H', 'L', 'O', 'Q',
    ...              'S', 'U', 'V', 'b', 'd', 'g', 'f', 'i', 'h', 'l', 'q']
    >>> for typechar in typechars:
    ...     print(typechar, ' : ', np.typename(typechar))
    ...
    S1  :  character
    ?  :  bool
    B  :  unsigned char
    D  :  complex double precision
    G  :  complex long double precision
    F  :  complex single precision
    I  :  unsigned integer
    H  :  unsigned short
    L  :  unsigned long integer
    O  :  object
    Q  :  unsigned long long integer
    S  :  string
    U  :  unicode
    V  :  void
    b  :  signed char
    d  :  double precision
    g  :  long precision
    f  :  single precision
    i  :  integer
    h  :  short
    l  :  long integer
    q  :  long long integer

    """
    return _namefromtype[char]

#-----------------------------------------------------------------------------

#determine the "minimum common type" for a group of arrays. 
Example #23
Source File: type_check.py    From lambda-packs with MIT License 4 votes vote down vote up
def common_type(*arrays):
    """
    Return a scalar type which is common to the input arrays.

    The return type will always be an inexact (i.e. floating point) scalar
    type, even if all the arrays are integer arrays. If one of the inputs is
    an integer array, the minimum precision type that is returned is a
    64-bit floating point dtype.

    All input arrays except int64 and uint64 can be safely cast to the
    returned dtype without loss of information.

    Parameters
    ----------
    array1, array2, ... : ndarrays
        Input arrays.

    Returns
    -------
    out : data type code
        Data type code.

    See Also
    --------
    dtype, mintypecode

    Examples
    --------
    >>> np.common_type(np.arange(2, dtype=np.float32))
    <type 'numpy.float32'>
    >>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2))
    <type 'numpy.float64'>
    >>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0]))
    <type 'numpy.complex128'>

    """
    is_complex = False
    precision = 0
    for a in arrays:
        t = a.dtype.type
        if iscomplexobj(a):
            is_complex = True
        if issubclass(t, _nx.integer):
            p = 2  # array_precision[_nx.double]
        else:
            p = array_precision.get(t, None)
            if p is None:
                raise TypeError("can't get common type for non-numeric array")
        precision = max(precision, p)
    if is_complex:
        return array_type[1][precision]
    else:
        return array_type[0][precision] 
Example #24
Source File: type_check.py    From lambda-packs with MIT License 4 votes vote down vote up
def typename(char):
    """
    Return a description for the given data type code.

    Parameters
    ----------
    char : str
        Data type code.

    Returns
    -------
    out : str
        Description of the input data type code.

    See Also
    --------
    dtype, typecodes

    Examples
    --------
    >>> typechars = ['S1', '?', 'B', 'D', 'G', 'F', 'I', 'H', 'L', 'O', 'Q',
    ...              'S', 'U', 'V', 'b', 'd', 'g', 'f', 'i', 'h', 'l', 'q']
    >>> for typechar in typechars:
    ...     print(typechar, ' : ', np.typename(typechar))
    ...
    S1  :  character
    ?  :  bool
    B  :  unsigned char
    D  :  complex double precision
    G  :  complex long double precision
    F  :  complex single precision
    I  :  unsigned integer
    H  :  unsigned short
    L  :  unsigned long integer
    O  :  object
    Q  :  unsigned long long integer
    S  :  string
    U  :  unicode
    V  :  void
    b  :  signed char
    d  :  double precision
    g  :  long precision
    f  :  single precision
    i  :  integer
    h  :  short
    l  :  long integer
    q  :  long long integer

    """
    return _namefromtype[char]

#-----------------------------------------------------------------------------

#determine the "minimum common type" for a group of arrays. 
Example #25
Source File: type_check.py    From lambda-packs with MIT License 4 votes vote down vote up
def common_type(*arrays):
    """
    Return a scalar type which is common to the input arrays.

    The return type will always be an inexact (i.e. floating point) scalar
    type, even if all the arrays are integer arrays. If one of the inputs is
    an integer array, the minimum precision type that is returned is a
    64-bit floating point dtype.

    All input arrays can be safely cast to the returned dtype without loss
    of information.

    Parameters
    ----------
    array1, array2, ... : ndarrays
        Input arrays.

    Returns
    -------
    out : data type code
        Data type code.

    See Also
    --------
    dtype, mintypecode

    Examples
    --------
    >>> np.common_type(np.arange(2, dtype=np.float32))
    <type 'numpy.float32'>
    >>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2))
    <type 'numpy.float64'>
    >>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0]))
    <type 'numpy.complex128'>

    """
    is_complex = False
    precision = 0
    for a in arrays:
        t = a.dtype.type
        if iscomplexobj(a):
            is_complex = True
        if issubclass(t, _nx.integer):
            p = 2  # array_precision[_nx.double]
        else:
            p = array_precision.get(t, None)
            if p is None:
                raise TypeError("can't get common type for non-numeric array")
        precision = max(precision, p)
    if is_complex:
        return array_type[1][precision]
    else:
        return array_type[0][precision] 
Example #26
Source File: type_check.py    From auto-alt-text-lambda-api with MIT License 4 votes vote down vote up
def typename(char):
    """
    Return a description for the given data type code.

    Parameters
    ----------
    char : str
        Data type code.

    Returns
    -------
    out : str
        Description of the input data type code.

    See Also
    --------
    dtype, typecodes

    Examples
    --------
    >>> typechars = ['S1', '?', 'B', 'D', 'G', 'F', 'I', 'H', 'L', 'O', 'Q',
    ...              'S', 'U', 'V', 'b', 'd', 'g', 'f', 'i', 'h', 'l', 'q']
    >>> for typechar in typechars:
    ...     print(typechar, ' : ', np.typename(typechar))
    ...
    S1  :  character
    ?  :  bool
    B  :  unsigned char
    D  :  complex double precision
    G  :  complex long double precision
    F  :  complex single precision
    I  :  unsigned integer
    H  :  unsigned short
    L  :  unsigned long integer
    O  :  object
    Q  :  unsigned long long integer
    S  :  string
    U  :  unicode
    V  :  void
    b  :  signed char
    d  :  double precision
    g  :  long precision
    f  :  single precision
    i  :  integer
    h  :  short
    l  :  long integer
    q  :  long long integer

    """
    return _namefromtype[char]

#-----------------------------------------------------------------------------

#determine the "minimum common type" for a group of arrays. 
Example #27
Source File: type_check.py    From auto-alt-text-lambda-api with MIT License 4 votes vote down vote up
def common_type(*arrays):
    """
    Return a scalar type which is common to the input arrays.

    The return type will always be an inexact (i.e. floating point) scalar
    type, even if all the arrays are integer arrays. If one of the inputs is
    an integer array, the minimum precision type that is returned is a
    64-bit floating point dtype.

    All input arrays can be safely cast to the returned dtype without loss
    of information.

    Parameters
    ----------
    array1, array2, ... : ndarrays
        Input arrays.

    Returns
    -------
    out : data type code
        Data type code.

    See Also
    --------
    dtype, mintypecode

    Examples
    --------
    >>> np.common_type(np.arange(2, dtype=np.float32))
    <type 'numpy.float32'>
    >>> np.common_type(np.arange(2, dtype=np.float32), np.arange(2))
    <type 'numpy.float64'>
    >>> np.common_type(np.arange(4), np.array([45, 6.j]), np.array([45.0]))
    <type 'numpy.complex128'>

    """
    is_complex = False
    precision = 0
    for a in arrays:
        t = a.dtype.type
        if iscomplexobj(a):
            is_complex = True
        if issubclass(t, _nx.integer):
            p = 2  # array_precision[_nx.double]
        else:
            p = array_precision.get(t, None)
            if p is None:
                raise TypeError("can't get common type for non-numeric array")
        precision = max(precision, p)
    if is_complex:
        return array_type[1][precision]
    else:
        return array_type[0][precision] 
Example #28
Source File: type_check.py    From vnpy_crypto with MIT License 4 votes vote down vote up
def typename(char):
    """
    Return a description for the given data type code.

    Parameters
    ----------
    char : str
        Data type code.

    Returns
    -------
    out : str
        Description of the input data type code.

    See Also
    --------
    dtype, typecodes

    Examples
    --------
    >>> typechars = ['S1', '?', 'B', 'D', 'G', 'F', 'I', 'H', 'L', 'O', 'Q',
    ...              'S', 'U', 'V', 'b', 'd', 'g', 'f', 'i', 'h', 'l', 'q']
    >>> for typechar in typechars:
    ...     print(typechar, ' : ', np.typename(typechar))
    ...
    S1  :  character
    ?  :  bool
    B  :  unsigned char
    D  :  complex double precision
    G  :  complex long double precision
    F  :  complex single precision
    I  :  unsigned integer
    H  :  unsigned short
    L  :  unsigned long integer
    O  :  object
    Q  :  unsigned long long integer
    S  :  string
    U  :  unicode
    V  :  void
    b  :  signed char
    d  :  double precision
    g  :  long precision
    f  :  single precision
    i  :  integer
    h  :  short
    l  :  long integer
    q  :  long long integer

    """
    return _namefromtype[char]

#-----------------------------------------------------------------------------

#determine the "minimum common type" for a group of arrays. 
Example #29
Source File: type_check.py    From recruit with Apache License 2.0 4 votes vote down vote up
def typename(char):
    """
    Return a description for the given data type code.

    Parameters
    ----------
    char : str
        Data type code.

    Returns
    -------
    out : str
        Description of the input data type code.

    See Also
    --------
    dtype, typecodes

    Examples
    --------
    >>> typechars = ['S1', '?', 'B', 'D', 'G', 'F', 'I', 'H', 'L', 'O', 'Q',
    ...              'S', 'U', 'V', 'b', 'd', 'g', 'f', 'i', 'h', 'l', 'q']
    >>> for typechar in typechars:
    ...     print(typechar, ' : ', np.typename(typechar))
    ...
    S1  :  character
    ?  :  bool
    B  :  unsigned char
    D  :  complex double precision
    G  :  complex long double precision
    F  :  complex single precision
    I  :  unsigned integer
    H  :  unsigned short
    L  :  unsigned long integer
    O  :  object
    Q  :  unsigned long long integer
    S  :  string
    U  :  unicode
    V  :  void
    b  :  signed char
    d  :  double precision
    g  :  long precision
    f  :  single precision
    i  :  integer
    h  :  short
    l  :  long integer
    q  :  long long integer

    """
    return _namefromtype[char]

#-----------------------------------------------------------------------------

#determine the "minimum common type" for a group of arrays. 
Example #30
Source File: type_check.py    From Computable with MIT License 4 votes vote down vote up
def typename(char):
    """
    Return a description for the given data type code.

    Parameters
    ----------
    char : str
        Data type code.

    Returns
    -------
    out : str
        Description of the input data type code.

    See Also
    --------
    dtype, typecodes

    Examples
    --------
    >>> typechars = ['S1', '?', 'B', 'D', 'G', 'F', 'I', 'H', 'L', 'O', 'Q',
    ...              'S', 'U', 'V', 'b', 'd', 'g', 'f', 'i', 'h', 'l', 'q']
    >>> for typechar in typechars:
    ...     print typechar, ' : ', np.typename(typechar)
    ...
    S1  :  character
    ?  :  bool
    B  :  unsigned char
    D  :  complex double precision
    G  :  complex long double precision
    F  :  complex single precision
    I  :  unsigned integer
    H  :  unsigned short
    L  :  unsigned long integer
    O  :  object
    Q  :  unsigned long long integer
    S  :  string
    U  :  unicode
    V  :  void
    b  :  signed char
    d  :  double precision
    g  :  long precision
    f  :  single precision
    i  :  integer
    h  :  short
    l  :  long integer
    q  :  long long integer

    """
    return _namefromtype[char]

#-----------------------------------------------------------------------------

#determine the "minimum common type" for a group of arrays.