Python numpy.core.numeric.issubdtype() Examples

The following are 21 code examples of numpy.core.numeric.issubdtype(). You can vote up the ones you like or vote down the ones you don't like, and go to the original project or source file by following the links above each example. You may also want to check out all available functions/classes of the module numpy.core.numeric , or try the search function .
Example #1
Source File: shape_base.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 6 votes vote down vote up
def _make_along_axis_idx(arr_shape, indices, axis):
	# compute dimensions to iterate over
    if not _nx.issubdtype(indices.dtype, _nx.integer):
        raise IndexError('`indices` must be an integer array')
    if len(arr_shape) != indices.ndim:
        raise ValueError(
            "`indices` and `arr` must have the same number of dimensions")
    shape_ones = (1,) * indices.ndim
    dest_dims = list(range(axis)) + [None] + list(range(axis+1, indices.ndim))

    # build a fancy index, consisting of orthogonal aranges, with the
    # requested index inserted at the right location
    fancy_index = []
    for dim, n in zip(dest_dims, arr_shape):
        if dim is None:
            fancy_index.append(indices)
        else:
            ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim+1:]
            fancy_index.append(_nx.arange(n).reshape(ind_shape))

    return tuple(fancy_index) 
Example #2
Source File: shape_base.py    From twitter-stock-recommendation with MIT License 6 votes vote down vote up
def _make_along_axis_idx(arr_shape, indices, axis):
	# compute dimensions to iterate over
    if not _nx.issubdtype(indices.dtype, _nx.integer):
        raise IndexError('`indices` must be an integer array')
    if len(arr_shape) != indices.ndim:
        raise ValueError(
            "`indices` and `arr` must have the same number of dimensions")
    shape_ones = (1,) * indices.ndim
    dest_dims = list(range(axis)) + [None] + list(range(axis+1, indices.ndim))

    # build a fancy index, consisting of orthogonal aranges, with the
    # requested index inserted at the right location
    fancy_index = []
    for dim, n in zip(dest_dims, arr_shape):
        if dim is None:
            fancy_index.append(indices)
        else:
            ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim+1:]
            fancy_index.append(_nx.arange(n).reshape(ind_shape))

    return tuple(fancy_index) 
Example #3
Source File: shape_base.py    From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License 6 votes vote down vote up
def _make_along_axis_idx(arr_shape, indices, axis):
	# compute dimensions to iterate over
    if not _nx.issubdtype(indices.dtype, _nx.integer):
        raise IndexError('`indices` must be an integer array')
    if len(arr_shape) != indices.ndim:
        raise ValueError(
            "`indices` and `arr` must have the same number of dimensions")
    shape_ones = (1,) * indices.ndim
    dest_dims = list(range(axis)) + [None] + list(range(axis+1, indices.ndim))

    # build a fancy index, consisting of orthogonal aranges, with the
    # requested index inserted at the right location
    fancy_index = []
    for dim, n in zip(dest_dims, arr_shape):
        if dim is None:
            fancy_index.append(indices)
        else:
            ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim+1:]
            fancy_index.append(_nx.arange(n).reshape(ind_shape))

    return tuple(fancy_index) 
Example #4
Source File: shape_base.py    From Carnets with BSD 3-Clause "New" or "Revised" License 6 votes vote down vote up
def _make_along_axis_idx(arr_shape, indices, axis):
	# compute dimensions to iterate over
    if not _nx.issubdtype(indices.dtype, _nx.integer):
        raise IndexError('`indices` must be an integer array')
    if len(arr_shape) != indices.ndim:
        raise ValueError(
            "`indices` and `arr` must have the same number of dimensions")
    shape_ones = (1,) * indices.ndim
    dest_dims = list(range(axis)) + [None] + list(range(axis+1, indices.ndim))

    # build a fancy index, consisting of orthogonal aranges, with the
    # requested index inserted at the right location
    fancy_index = []
    for dim, n in zip(dest_dims, arr_shape):
        if dim is None:
            fancy_index.append(indices)
        else:
            ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim+1:]
            fancy_index.append(_nx.arange(n).reshape(ind_shape))

    return tuple(fancy_index) 
Example #5
Source File: shape_base.py    From coffeegrindsize with MIT License 6 votes vote down vote up
def _make_along_axis_idx(arr_shape, indices, axis):
	# compute dimensions to iterate over
    if not _nx.issubdtype(indices.dtype, _nx.integer):
        raise IndexError('`indices` must be an integer array')
    if len(arr_shape) != indices.ndim:
        raise ValueError(
            "`indices` and `arr` must have the same number of dimensions")
    shape_ones = (1,) * indices.ndim
    dest_dims = list(range(axis)) + [None] + list(range(axis+1, indices.ndim))

    # build a fancy index, consisting of orthogonal aranges, with the
    # requested index inserted at the right location
    fancy_index = []
    for dim, n in zip(dest_dims, arr_shape):
        if dim is None:
            fancy_index.append(indices)
        else:
            ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim+1:]
            fancy_index.append(_nx.arange(n).reshape(ind_shape))

    return tuple(fancy_index) 
Example #6
Source File: shape_base.py    From pySINDy with MIT License 6 votes vote down vote up
def _make_along_axis_idx(arr_shape, indices, axis):
	# compute dimensions to iterate over
    if not _nx.issubdtype(indices.dtype, _nx.integer):
        raise IndexError('`indices` must be an integer array')
    if len(arr_shape) != indices.ndim:
        raise ValueError(
            "`indices` and `arr` must have the same number of dimensions")
    shape_ones = (1,) * indices.ndim
    dest_dims = list(range(axis)) + [None] + list(range(axis+1, indices.ndim))

    # build a fancy index, consisting of orthogonal aranges, with the
    # requested index inserted at the right location
    fancy_index = []
    for dim, n in zip(dest_dims, arr_shape):
        if dim is None:
            fancy_index.append(indices)
        else:
            ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim+1:]
            fancy_index.append(_nx.arange(n).reshape(ind_shape))

    return tuple(fancy_index) 
Example #7
Source File: shape_base.py    From GraphicDesignPatternByPython with MIT License 6 votes vote down vote up
def _make_along_axis_idx(arr_shape, indices, axis):
	# compute dimensions to iterate over
    if not _nx.issubdtype(indices.dtype, _nx.integer):
        raise IndexError('`indices` must be an integer array')
    if len(arr_shape) != indices.ndim:
        raise ValueError(
            "`indices` and `arr` must have the same number of dimensions")
    shape_ones = (1,) * indices.ndim
    dest_dims = list(range(axis)) + [None] + list(range(axis+1, indices.ndim))

    # build a fancy index, consisting of orthogonal aranges, with the
    # requested index inserted at the right location
    fancy_index = []
    for dim, n in zip(dest_dims, arr_shape):
        if dim is None:
            fancy_index.append(indices)
        else:
            ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim+1:]
            fancy_index.append(_nx.arange(n).reshape(ind_shape))

    return tuple(fancy_index) 
Example #8
Source File: shape_base.py    From Mastering-Elasticsearch-7.0 with MIT License 6 votes vote down vote up
def _make_along_axis_idx(arr_shape, indices, axis):
	# compute dimensions to iterate over
    if not _nx.issubdtype(indices.dtype, _nx.integer):
        raise IndexError('`indices` must be an integer array')
    if len(arr_shape) != indices.ndim:
        raise ValueError(
            "`indices` and `arr` must have the same number of dimensions")
    shape_ones = (1,) * indices.ndim
    dest_dims = list(range(axis)) + [None] + list(range(axis+1, indices.ndim))

    # build a fancy index, consisting of orthogonal aranges, with the
    # requested index inserted at the right location
    fancy_index = []
    for dim, n in zip(dest_dims, arr_shape):
        if dim is None:
            fancy_index.append(indices)
        else:
            ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim+1:]
            fancy_index.append(_nx.arange(n).reshape(ind_shape))

    return tuple(fancy_index) 
Example #9
Source File: shape_base.py    From lambda-packs with MIT License 6 votes vote down vote up
def _make_along_axis_idx(arr_shape, indices, axis):
	# compute dimensions to iterate over
    if not _nx.issubdtype(indices.dtype, _nx.integer):
        raise IndexError('`indices` must be an integer array')
    if len(arr_shape) != indices.ndim:
        raise ValueError(
            "`indices` and `arr` must have the same number of dimensions")
    shape_ones = (1,) * indices.ndim
    dest_dims = list(range(axis)) + [None] + list(range(axis+1, indices.ndim))

    # build a fancy index, consisting of orthogonal aranges, with the
    # requested index inserted at the right location
    fancy_index = []
    for dim, n in zip(dest_dims, arr_shape):
        if dim is None:
            fancy_index.append(indices)
        else:
            ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim+1:]
            fancy_index.append(_nx.arange(n).reshape(ind_shape))

    return tuple(fancy_index) 
Example #10
Source File: shape_base.py    From recruit with Apache License 2.0 6 votes vote down vote up
def _make_along_axis_idx(arr_shape, indices, axis):
	# compute dimensions to iterate over
    if not _nx.issubdtype(indices.dtype, _nx.integer):
        raise IndexError('`indices` must be an integer array')
    if len(arr_shape) != indices.ndim:
        raise ValueError(
            "`indices` and `arr` must have the same number of dimensions")
    shape_ones = (1,) * indices.ndim
    dest_dims = list(range(axis)) + [None] + list(range(axis+1, indices.ndim))

    # build a fancy index, consisting of orthogonal aranges, with the
    # requested index inserted at the right location
    fancy_index = []
    for dim, n in zip(dest_dims, arr_shape):
        if dim is None:
            fancy_index.append(indices)
        else:
            ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim+1:]
            fancy_index.append(_nx.arange(n).reshape(ind_shape))

    return tuple(fancy_index) 
Example #11
Source File: type_check.py    From GraphicDesignPatternByPython with MIT License 5 votes vote down vote up
def asfarray(a, dtype=_nx.float_):
    """
    Return an array converted to a float type.

    Parameters
    ----------
    a : array_like
        The input array.
    dtype : str or dtype object, optional
        Float type code to coerce input array `a`.  If `dtype` is one of the
        'int' dtypes, it is replaced with float64.

    Returns
    -------
    out : ndarray
        The input `a` as a float ndarray.

    Examples
    --------
    >>> np.asfarray([2, 3])
    array([ 2.,  3.])
    >>> np.asfarray([2, 3], dtype='float')
    array([ 2.,  3.])
    >>> np.asfarray([2, 3], dtype='int8')
    array([ 2.,  3.])

    """
    if not _nx.issubdtype(dtype, _nx.inexact):
        dtype = _nx.float_
    return asarray(a, dtype=dtype) 
Example #12
Source File: type_check.py    From predictive-maintenance-using-machine-learning with Apache License 2.0 5 votes vote down vote up
def asfarray(a, dtype=_nx.float_):
    """
    Return an array converted to a float type.

    Parameters
    ----------
    a : array_like
        The input array.
    dtype : str or dtype object, optional
        Float type code to coerce input array `a`.  If `dtype` is one of the
        'int' dtypes, it is replaced with float64.

    Returns
    -------
    out : ndarray
        The input `a` as a float ndarray.

    Examples
    --------
    >>> np.asfarray([2, 3])
    array([ 2.,  3.])
    >>> np.asfarray([2, 3], dtype='float')
    array([ 2.,  3.])
    >>> np.asfarray([2, 3], dtype='int8')
    array([ 2.,  3.])

    """
    if not _nx.issubdtype(dtype, _nx.inexact):
        dtype = _nx.float_
    return asarray(a, dtype=dtype) 
Example #13
Source File: type_check.py    From recruit with Apache License 2.0 5 votes vote down vote up
def asfarray(a, dtype=_nx.float_):
    """
    Return an array converted to a float type.

    Parameters
    ----------
    a : array_like
        The input array.
    dtype : str or dtype object, optional
        Float type code to coerce input array `a`.  If `dtype` is one of the
        'int' dtypes, it is replaced with float64.

    Returns
    -------
    out : ndarray
        The input `a` as a float ndarray.

    Examples
    --------
    >>> np.asfarray([2, 3])
    array([ 2.,  3.])
    >>> np.asfarray([2, 3], dtype='float')
    array([ 2.,  3.])
    >>> np.asfarray([2, 3], dtype='int8')
    array([ 2.,  3.])

    """
    if not _nx.issubdtype(dtype, _nx.inexact):
        dtype = _nx.float_
    return asarray(a, dtype=dtype) 
Example #14
Source File: type_check.py    From pySINDy with MIT License 5 votes vote down vote up
def asfarray(a, dtype=_nx.float_):
    """
    Return an array converted to a float type.

    Parameters
    ----------
    a : array_like
        The input array.
    dtype : str or dtype object, optional
        Float type code to coerce input array `a`.  If `dtype` is one of the
        'int' dtypes, it is replaced with float64.

    Returns
    -------
    out : ndarray
        The input `a` as a float ndarray.

    Examples
    --------
    >>> np.asfarray([2, 3])
    array([ 2.,  3.])
    >>> np.asfarray([2, 3], dtype='float')
    array([ 2.,  3.])
    >>> np.asfarray([2, 3], dtype='int8')
    array([ 2.,  3.])

    """
    if not _nx.issubdtype(dtype, _nx.inexact):
        dtype = _nx.float_
    return asarray(a, dtype=dtype) 
Example #15
Source File: type_check.py    From Mastering-Elasticsearch-7.0 with MIT License 5 votes vote down vote up
def asfarray(a, dtype=_nx.float_):
    """
    Return an array converted to a float type.

    Parameters
    ----------
    a : array_like
        The input array.
    dtype : str or dtype object, optional
        Float type code to coerce input array `a`.  If `dtype` is one of the
        'int' dtypes, it is replaced with float64.

    Returns
    -------
    out : ndarray
        The input `a` as a float ndarray.

    Examples
    --------
    >>> np.asfarray([2, 3])
    array([ 2.,  3.])
    >>> np.asfarray([2, 3], dtype='float')
    array([ 2.,  3.])
    >>> np.asfarray([2, 3], dtype='int8')
    array([ 2.,  3.])

    """
    if not _nx.issubdtype(dtype, _nx.inexact):
        dtype = _nx.float_
    return asarray(a, dtype=dtype) 
Example #16
Source File: type_check.py    From coffeegrindsize with MIT License 5 votes vote down vote up
def asfarray(a, dtype=_nx.float_):
    """
    Return an array converted to a float type.

    Parameters
    ----------
    a : array_like
        The input array.
    dtype : str or dtype object, optional
        Float type code to coerce input array `a`.  If `dtype` is one of the
        'int' dtypes, it is replaced with float64.

    Returns
    -------
    out : ndarray
        The input `a` as a float ndarray.

    Examples
    --------
    >>> np.asfarray([2, 3])
    array([ 2.,  3.])
    >>> np.asfarray([2, 3], dtype='float')
    array([ 2.,  3.])
    >>> np.asfarray([2, 3], dtype='int8')
    array([ 2.,  3.])

    """
    if not _nx.issubdtype(dtype, _nx.inexact):
        dtype = _nx.float_
    return asarray(a, dtype=dtype) 
Example #17
Source File: type_check.py    From vnpy_crypto with MIT License 5 votes vote down vote up
def asfarray(a, dtype=_nx.float_):
    """
    Return an array converted to a float type.

    Parameters
    ----------
    a : array_like
        The input array.
    dtype : str or dtype object, optional
        Float type code to coerce input array `a`.  If `dtype` is one of the
        'int' dtypes, it is replaced with float64.

    Returns
    -------
    out : ndarray
        The input `a` as a float ndarray.

    Examples
    --------
    >>> np.asfarray([2, 3])
    array([ 2.,  3.])
    >>> np.asfarray([2, 3], dtype='float')
    array([ 2.,  3.])
    >>> np.asfarray([2, 3], dtype='int8')
    array([ 2.,  3.])

    """
    if not _nx.issubdtype(dtype, _nx.inexact):
        dtype = _nx.float_
    return asarray(a, dtype=dtype) 
Example #18
Source File: type_check.py    From Carnets with BSD 3-Clause "New" or "Revised" License 5 votes vote down vote up
def asfarray(a, dtype=_nx.float_):
    """
    Return an array converted to a float type.

    Parameters
    ----------
    a : array_like
        The input array.
    dtype : str or dtype object, optional
        Float type code to coerce input array `a`.  If `dtype` is one of the
        'int' dtypes, it is replaced with float64.

    Returns
    -------
    out : ndarray
        The input `a` as a float ndarray.

    Examples
    --------
    >>> np.asfarray([2, 3])
    array([ 2.,  3.])
    >>> np.asfarray([2, 3], dtype='float')
    array([ 2.,  3.])
    >>> np.asfarray([2, 3], dtype='int8')
    array([ 2.,  3.])

    """
    if not _nx.issubdtype(dtype, _nx.inexact):
        dtype = _nx.float_
    return asarray(a, dtype=dtype) 
Example #19
Source File: type_check.py    From Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda with MIT License 5 votes vote down vote up
def asfarray(a, dtype=_nx.float_):
    """
    Return an array converted to a float type.

    Parameters
    ----------
    a : array_like
        The input array.
    dtype : str or dtype object, optional
        Float type code to coerce input array `a`.  If `dtype` is one of the
        'int' dtypes, it is replaced with float64.

    Returns
    -------
    out : ndarray
        The input `a` as a float ndarray.

    Examples
    --------
    >>> np.asfarray([2, 3])
    array([ 2.,  3.])
    >>> np.asfarray([2, 3], dtype='float')
    array([ 2.,  3.])
    >>> np.asfarray([2, 3], dtype='int8')
    array([ 2.,  3.])

    """
    if not _nx.issubdtype(dtype, _nx.inexact):
        dtype = _nx.float_
    return asarray(a, dtype=dtype) 
Example #20
Source File: type_check.py    From lambda-packs with MIT License 5 votes vote down vote up
def asfarray(a, dtype=_nx.float_):
    """
    Return an array converted to a float type.

    Parameters
    ----------
    a : array_like
        The input array.
    dtype : str or dtype object, optional
        Float type code to coerce input array `a`.  If `dtype` is one of the
        'int' dtypes, it is replaced with float64.

    Returns
    -------
    out : ndarray
        The input `a` as a float ndarray.

    Examples
    --------
    >>> np.asfarray([2, 3])
    array([ 2.,  3.])
    >>> np.asfarray([2, 3], dtype='float')
    array([ 2.,  3.])
    >>> np.asfarray([2, 3], dtype='int8')
    array([ 2.,  3.])

    """
    if not _nx.issubdtype(dtype, _nx.inexact):
        dtype = _nx.float_
    return asarray(a, dtype=dtype) 
Example #21
Source File: type_check.py    From twitter-stock-recommendation with MIT License 5 votes vote down vote up
def asfarray(a, dtype=_nx.float_):
    """
    Return an array converted to a float type.

    Parameters
    ----------
    a : array_like
        The input array.
    dtype : str or dtype object, optional
        Float type code to coerce input array `a`.  If `dtype` is one of the
        'int' dtypes, it is replaced with float64.

    Returns
    -------
    out : ndarray
        The input `a` as a float ndarray.

    Examples
    --------
    >>> np.asfarray([2, 3])
    array([ 2.,  3.])
    >>> np.asfarray([2, 3], dtype='float')
    array([ 2.,  3.])
    >>> np.asfarray([2, 3], dtype='int8')
    array([ 2.,  3.])

    """
    if not _nx.issubdtype(dtype, _nx.inexact):
        dtype = _nx.float_
    return asarray(a, dtype=dtype)